IDEAS home Printed from https://ideas.repec.org/a/inm/ormksc/v26y2007i3p380-399.html
   My bibliography  Save this article

Representation and Inference of Lexicographic Preference Models and Their Variants

Author

Listed:
  • Rajeev Kohli

    (Graduate School of Business, Columbia University, 506 Uris Hall, New York, New York 10027)

  • Kamel Jedidi

    (Graduate School of Business, Columbia University, 518 Uris Hall, New York, New York 10027)

Abstract

The authors propose two variants of lexicographic preference rules. They obtain the necessary and sufficient conditions under which a linear utility function represents a standard lexicographic rule, and each of the proposed variants, over a set of discrete attributes. They then: (i) characterize the measurement properties of the parameters in the representations; (ii) propose a nonmetric procedure for inferring each lexicographic rule from pairwise comparisons of multiattribute alternatives; (iii) describe a method for distinguishing among different lexicographic rules, and between lexicographic and linear preference models; and (iv) suggest how individual lexicographic rules can be combined to describe hierarchical market structures. The authors illustrate each of these aspects using data on personal-computer preferences. They find that two-thirds of the subjects in the sample use some kind of lexicographic rule. In contrast, only one in five subjects use a standard lexicographic rule. This suggests that lexicographic rules are more widely used by consumers than one might have thought in the absence of the lexicographic variants described in the paper. The authors report a simulation assessing the ability of the proposed inference procedure to distinguish among alternative lexicographic models, and between linear-compensatory and lexicographic models.

Suggested Citation

  • Rajeev Kohli & Kamel Jedidi, 2007. "Representation and Inference of Lexicographic Preference Models and Their Variants," Marketing Science, INFORMS, vol. 26(3), pages 380-399, 05-06.
  • Handle: RePEc:inm:ormksc:v:26:y:2007:i:3:p:380-399
    DOI: 10.1287/mksc.1060.0241
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mksc.1060.0241
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mksc.1060.0241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rajeev Kohli & Kamel Jedidi, 2005. "Probabilistic Subset Conjunction," Psychometrika, Springer;The Psychometric Society, vol. 70(4), pages 737-757, December.
    2. Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
    3. Colman, Andrew M. & Stirk, Jonathan A., 1999. "Singleton bias and lexicographic preferences among equally valued alternatives," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 337-351, December.
    4. Peter C. Fishburn, 1975. "Axioms for Lexicographic Preferences," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 42(3), pages 415-419.
    5. Olivier Toubia & Duncan I. Simester & John R. Hauser & Ely Dahan, 2003. "Fast Polyhedral Adaptive Conjoint Estimation," Marketing Science, INFORMS, vol. 22(3), pages 273-303.
    6. Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
    7. Peter C. Fishburn, 1974. "Exceptional Paper--Lexicographic Orders, Utilities and Decision Rules: A Survey," Management Science, INFORMS, vol. 20(11), pages 1442-1471, July.
    8. Bridges, Douglas S., 1983. "Numerical representation of intransitive preferences on a countable set," Journal of Economic Theory, Elsevier, vol. 30(1), pages 213-217, June.
    9. Dhar, Ravi & Nowlis, Stephen M, 1999. "The Effect of Time Pressure on Consumer Choice Deferral," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(4), pages 369-384, March.
    10. Wakker, Peter, 1988. "Continuity of Preference Relations for Separable Topologies," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 29(1), pages 105-110, February.
    11. Glen L. Urban & Philip L. Johnson & John R. Hauser, 1984. "Testing Competitive Market Structures," Marketing Science, INFORMS, vol. 3(2), pages 83-112.
    12. John C. Liechty & Duncan K. H. Fong & Wayne S. DeSarbo, 2005. "Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(2), pages 285-293, November.
    13. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    14. P. K. Kannan & Gordon P. Wright, 1991. "Modeling and Testing Structured Markets: A Nested Logit Approach," Marketing Science, INFORMS, vol. 10(1), pages 58-82.
    15. John R. Hauser & Steven M. Shugan, 1980. "Intensity Measures of Consumer Preference," Operations Research, INFORMS, vol. 28(2), pages 278-320, April.
    16. V. Srinivasan & Allan Shocker, 1973. "Estimating the weights for multiple attributes in a composite criterion using pairwise judgments," Psychometrika, Springer;The Psychometric Society, vol. 38(4), pages 473-493, December.
    17. John R. Hauser & Olivier Toubia, 2005. "The Impact of Utility Balance and Endogeneity in Conjoint Analysis," Marketing Science, INFORMS, vol. 24(3), pages 498-507, August.
    18. Laura Martignon & Ulrich Hoffrage, 2002. "Fast, frugal, and fit: Simple heuristics for paired comparison," Theory and Decision, Springer, vol. 52(1), pages 29-71, February.
    19. Ford, J. Kevin & Schmitt, Neal & Schechtman, Susan L. & Hults, Brian M. & Doherty, Mary L., 1989. "Process tracing methods: Contributions, problems, and neglected research questions," Organizational Behavior and Human Decision Processes, Elsevier, vol. 43(1), pages 75-117, February.
    20. John, Deborah Roedder, 1999. "Consumer Socialization of Children: A Retrospective Look at Twenty-Five Years of Research," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 26(3), pages 183-213, December.
    21. Knoblauch, Vicki, 2000. "Lexicographic orders and preference representation," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 255-267, October.
    22. Theodoros Evgeniou & Constantinos Boussios & Giorgos Zacharia, 2005. "Generalized Robust Conjoint Estimation," Marketing Science, INFORMS, vol. 24(3), pages 415-429, May.
    23. Taylor Randall & Christian Terwiesch & Karl T. Ulrich, 2007. "Research Note—User Design of Customized Products," Marketing Science, INFORMS, vol. 26(2), pages 268-280, 03-04.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajeev Kohli & Khaled Boughanmi & Vikram Kohli, 2019. "Randomized Algorithms for Lexicographic Inference," Operations Research, INFORMS, vol. 67(2), pages 357-375, March.
    2. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    3. Theodoros Evgeniou & Massimiliano Pontil & Olivier Toubia, 2007. "A Convex Optimization Approach to Modeling Consumer Heterogeneity in Conjoint Estimation," Marketing Science, INFORMS, vol. 26(6), pages 805-818, 11-12.
    4. Shi, Bowen & Wang, Gaowang & Zhang, Zhixiang, 2020. "On the Utility Function Representability of Lexicographic Preferences," MPRA Paper 102561, University Library of Munich, Germany.
    5. John Hauser & Gerard J. Tellis & Abbie Griffin, 2006. "Research on Innovation: A Review and Agenda for," Marketing Science, INFORMS, vol. 25(6), pages 687-717, 11-12.
    6. Oded Netzer & Olivier Toubia & Eric Bradlow & Ely Dahan & Theodoros Evgeniou & Fred Feinberg & Eleanor Feit & Sam Hui & Joseph Johnson & John Liechty & James Orlin & Vithala Rao, 2008. "Beyond conjoint analysis: Advances in preference measurement," Marketing Letters, Springer, vol. 19(3), pages 337-354, December.
    7. Michael Yee & Ely Dahan & John R. Hauser & James Orlin, 2007. "Greedoid-Based Noncompensatory Inference," Marketing Science, INFORMS, vol. 26(4), pages 532-549, 07-08.
    8. James Agarwal & Wayne DeSarbo & Naresh K. Malhotra & Vithala Rao, 2015. "An Interdisciplinary Review of Research in Conjoint Analysis: Recent Developments and Directions for Future Research," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 2(1), pages 19-40, March.
    9. Olivier Toubia & John R. Hauser, 2007. "—On Managerially Efficient Experimental Designs," Marketing Science, INFORMS, vol. 26(6), pages 851-858, 11-12.
    10. Mridu Prabal Goswami & Manipushpak Mitra & Debapriya Sen, 2022. "A Characterization of Lexicographic Preferences," Decision Analysis, INFORMS, vol. 19(2), pages 170-187, June.
    11. Anocha Aribarg & Thomas Otter & Daniel Zantedeschi & Greg M. Allenby & Taylor Bentley & David J. Curry & Marc Dotson & Ty Henderson & Elisabeth Honka & Rajeev Kohli & Kamel Jedidi & Stephan Seiler & X, 2018. "Advancing Non-compensatory Choice Models in Marketing," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 5(1), pages 82-92, March.
    12. repec:cup:judgdm:v:4:y:2009:i:3:p:200-213 is not listed on IDEAS
    13. Knoblauch, Vicki, 2000. "Lexicographic orders and preference representation," Journal of Mathematical Economics, Elsevier, vol. 34(2), pages 255-267, October.
    14. Olivier Toubia & John Hauser & Rosanna Garcia, 2007. "Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application," Marketing Science, INFORMS, vol. 26(5), pages 596-610, 09-10.
    15. Anja Dieckmann & Katrin Dippold & Holger Dietrich, 2009. "Compensatory versus noncompensatory models for predicting consumer preferences," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 4(3), pages 200-213, April.
    16. Petri, Henrik & Voorneveld, Mark, 2016. "Characterizing lexicographic preferences," Journal of Mathematical Economics, Elsevier, vol. 63(C), pages 54-61.
    17. Dongling Huang & Lan Luo, 2016. "Consumer Preference Elicitation of Complex Products Using Fuzzy Support Vector Machine Active Learning," Marketing Science, INFORMS, vol. 35(3), pages 445-464, May.
    18. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    19. Jeffrey E. Harris & Mariana Gerstenblüth & Patricia Triunfo, 2018. "Smokers’ Rational Lexicographic Preferences for Cigarette Package Warnings: A Discrete Choice Experiment with Eye Tracking," Documentos de Trabajo (working papers) 0218, Department of Economics - dECON.
    20. Steven M. Shugan, 2006. "Editorial: Who Is Afraid to Give Freedom of Speech to Marketing Folks?," Marketing Science, INFORMS, vol. 25(5), pages 403-410, September.
    21. Halme, Merja & Kallio, Markku, 2011. "Estimation methods for choice-based conjoint analysis of consumer preferences," European Journal of Operational Research, Elsevier, vol. 214(1), pages 160-167, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:26:y:2007:i:3:p:380-399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.