IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-319-56941-3_8.html
   My bibliography  Save this book chapter

Empirical Models of Learning Dynamics: A Survey of Recent Developments

In: Handbook of Marketing Decision Models

Author

Listed:
  • Andrew T. Ching

    (University of Toronto)

  • Tülin Erdem

    (New York University)

  • Michael P. Keane

    (University of Oxford)

Abstract

There is now a very large literature on dynamic learning modelsDynamic models in marketing. Learning dynamics can be broadly defined as encompassing any process whereby the prior history of a consumer or market affects current utility evaluations (e.g., social learning, search, correlated learning, information spillover, etc.). In the present chapter, we focus on discussing this rapidly growing literature that deals with this broader view of learning dynamics.

Suggested Citation

  • Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
  • Handle: RePEc:spr:isochp:978-3-319-56941-3_8
    DOI: 10.1007/978-3-319-56941-3_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Keane, Michael P., 2010. "Structural vs. atheoretic approaches to econometrics," Journal of Econometrics, Elsevier, vol. 156(1), pages 3-20, May.
    2. Milgrom, Paul & Roberts, John, 1982. "Limit Pricing and Entry under Incomplete Information: An Equilibrium Analysis," Econometrica, Econometric Society, vol. 50(2), pages 443-459, March.
    3. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    4. Daniel Houser & Michael Keane & Kevin McCabe, 2004. "Behavior in a Dynamic Decision Problem: An Analysis of Experimental Evidence Using a Bayesian Type Classification Algorithm," Econometrica, Econometric Society, vol. 72(3), pages 781-822, May.
    5. Sergei Koulayev, 2013. "Search With Dirichlet Priors: Estimation and Implications for Consumer Demand," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 226-239, April.
    6. Brian Knight & Nathan Schiff, 2010. "Momentum and Social Learning in Presidential Primaries," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1110-1150.
    7. Shaun Larcom & Ferdinand Rauch & Tim Willems, 2017. "The Benefits of Forced Experimentation: Striking Evidence from the London Underground Network," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 2019-2055.
    8. Jae Young Lee & David R. Bell, 2013. "Neighborhood Social Capital and Social Learning for Experience Attributes of Products," Marketing Science, INFORMS, vol. 32(6), pages 960-976, November.
    9. Andrew T. Ching & Robert Clark & Ignatius Horstmann & Hyunwoo Lim, 2016. "The Effects of Publicity on Demand: The Case of Anti-Cholesterol Drugs," Marketing Science, INFORMS, vol. 35(1), pages 158-181, January.
    10. Jonathan D. Ketcham & Claudio Lucarelli & Eugenio J. Miravete & M. Christopher Roebuck, 2012. "Sinking, Swimming, or Learning to Swim in Medicare Part D," American Economic Review, American Economic Association, vol. 102(6), pages 2639-2673, October.
    11. K. Sudhir & Nathan Yang, 2014. "Exploiting the Choice-Consumption Mismatch: A New Approach to Disentangle State Dependence and Heterogeneity," Cowles Foundation Discussion Papers 1941, Cowles Foundation for Research in Economics, Yale University.
    12. Ching, Andrew T., 2010. "Consumer learning and heterogeneity: Dynamics of demand for prescription drugs after patent expiration," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 619-638, November.
    13. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    14. Susan Godlonton & Rebecca L. Thornton, 2013. "Learning from Others' HIV Testing: Updating Beliefs and Responding to Risk," American Economic Review, American Economic Association, vol. 103(3), pages 439-444, May.
    15. Robert M. Sauer, 2015. "Does It Pay For Women To Volunteer?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(2), pages 537-564, May.
    16. Ulrike Malmendier & Stefan Nagel, 2011. "Depression Babies: Do Macroeconomic Experiences Affect Risk Taking?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 126(1), pages 373-416.
    17. Jonathan D. Ketcham & Claudio Lucarelli & Christopher A. Powers, 2015. "Paying Attention or Paying Too Much in Medicare Part D," American Economic Review, American Economic Association, vol. 105(1), pages 204-233, January.
    18. Botao Yang & Andrew T. Ching, 2014. "Dynamics of Consumer Adoption of Financial Innovation: The Case of ATM Cards," Management Science, INFORMS, vol. 60(4), pages 903-922, April.
    19. Yi Zhao & Sha Yang & Vishal Narayan & Ying Zhao, 2013. "Modeling Consumer Learning from Online Product Reviews," Marketing Science, INFORMS, vol. 32(1), pages 153-169, May.
    20. Andrew Ching & Masakazu Ishihara, 2010. "The effects of detailing on prescribing decisions under quality uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 8(2), pages 123-165, June.
    21. Andrew T. Ching, 2010. "A Dynamic Oligopoly Structural Model For The Prescription Drug Market After Patent Expiration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 1175-1207, November.
    22. Hai Che & Tülin Erdem & T. Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    23. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    24. Michael Rothschild, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown: A Summary," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 1, pages 293-294, National Bureau of Economic Research, Inc.
    25. Victor Aguirregabiria & Pedro Mira, 2007. "Sequential Estimation of Dynamic Discrete Games," Econometrica, Econometric Society, vol. 75(1), pages 1-53, January.
    26. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    27. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    28. Tao Chen & Baohong Sun & Vishal Singh, 2009. "An Empirical Investigation of the Dynamic Effect of Marlboro's Permanent Pricing Shift," Marketing Science, INFORMS, vol. 28(4), pages 740-758, 07-08.
    29. Rothschild, Michael, 1974. "Searching for the Lowest Price When the Distribution of Prices Is Unknown," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 689-711, July/Aug..
    30. Chunhua Wu & Hai Che & Tat Y. Chan & Xianghua Lu, 2015. "The Economic Value of Online Reviews," Marketing Science, INFORMS, vol. 34(5), pages 739-754, September.
    31. Patrick Hummel & Brian Knight, 2015. "Sequential Or Simultaneous Elections? A Welfare Analysis," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 851-887, August.
    32. Kenneth Hendricks & Alan Sorensen & Thomas Wiseman, 2012. "Observational Learning and Demand for Search Goods," American Economic Journal: Microeconomics, American Economic Association, vol. 4(1), pages 1-31, February.
    33. Xiaodong Liu & John H. Kagel & Lung‐Fei Lee, 2012. "Learning from peers in signaling game experiments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(7), pages 1037-1058, November.
    34. Peter W. Newberry, 2016. "An empirical study of observational learning," RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 394-432, May.
    35. David I. Laibson & Xavier Gabaix, 2000. "A Boundedly Rational Decision Algorithm," American Economic Review, American Economic Association, vol. 90(2), pages 433-438, May.
    36. Mitchell J. Lovett & Richard Staelin, 2016. "The Role of Paid, Earned, and Owned Media in Building Entertainment Brands: Reminding, Informing, and Enhancing Enjoyment," Marketing Science, INFORMS, vol. 35(1), pages 142-157, January.
    37. Yan Huang & Param Vir Singh & Kannan Srinivasan, 2014. "Crowdsourcing New Product Ideas Under Consumer Learning," Management Science, INFORMS, vol. 60(9), pages 2138-2159, September.
    38. Andrew Ching & Tülin Erdem & Michael Keane, 2009. "The price consideration model of brand choice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(3), pages 393-420, April.
    39. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    40. Geweke, John & Keane, Michael, 2001. "Computationally intensive methods for integration in econometrics," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 56, pages 3463-3568, Elsevier.
    41. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    42. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    43. Juanjuan Zhang, 2010. "The Sound of Silence: Observational Learning in the U.S. Kidney Market," Marketing Science, INFORMS, vol. 29(2), pages 315-335, 03-04.
    44. Tülin Erdem & Michael Keane & T. Öncü & Judi Strebel, 2005. "Learning About Computers: An Analysis of Information Search and Technology Choice," Quantitative Marketing and Economics (QME), Springer, vol. 3(3), pages 207-247, September.
    45. Lucas W. Davis, 2004. "The Effect of Health Risk on Housing Values: Evidence from a Cancer Cluster," American Economic Review, American Economic Association, vol. 94(5), pages 1693-1704, December.
    46. Robert M. Sauer, 2015. "Does It Pay For Women To Volunteer?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 537-564, May.
    47. Mariano,Roberto & Schuermann,Til & Weeks,Melvyn J. (ed.), 2000. "Simulation-based Inference in Econometrics," Cambridge Books, Cambridge University Press, number 9780521591126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    2. Victor Aguirregabiria & Jihye Jeon, 2020. "Firms’ Beliefs and Learning: Models, Identification, and Empirical Evidence," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(2), pages 203-235, March.
    3. Arjen van Lin & Els Gijsbrechts, 2019. "“Hello Jumbo!” The Spatio-Temporal Rollout and Traffic to a New Grocery Chain After Acquisition," Management Science, INFORMS, vol. 67(5), pages 2388-2411, May.
    4. Haijing Hao & Rema Padman & Baohong Sun & Rahul Telang, 2019. "Modeling social learning on consumers’ long-term usage of a mobile technology: a Bayesian estimation of a Bayesian learning model," Electronic Commerce Research, Springer, vol. 19(1), pages 1-21, March.
    5. Duflo, Esther & Banerjee, Abhijit & Keniston, Daniel, 2019. "The Efficient Deployment of Police Resources: Theory and New Evidence from a Randomized Drunk Driving Crackdown in India," CEPR Discussion Papers 13981, C.E.P.R. Discussion Papers.
    6. Mandy Mantian Hu & Sha Yang & Daniel Yi Xu, 2019. "Understanding the Social Learning Effect in Contagious Switching Behavior," Management Science, INFORMS, vol. 65(10), pages 4771-4794, October.
    7. Yanhao Max Wei, 2020. "The Similarity Network of Motion Pictures," Management Science, INFORMS, vol. 66(4), pages 1647-1671, April.
    8. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    9. Limin Fang, 2022. "The Effects of Online Review Platforms on Restaurant Revenue, Consumer Learning, and Welfare," Management Science, INFORMS, vol. 68(11), pages 8116-8143, November.
    10. Andrew T. Ching & Hyunwoo Lim, 2020. "A Structural Model of Correlated Learning and Late-Mover Advantages: The Case of Statins," Management Science, INFORMS, vol. 66(3), pages 1095-1123, March.
    11. Shunyao Yan & Klaus M. Miller & Bernd Skiera, 2020. "How Does the Adoption of Ad Blockers Affect News Consumption?," Papers 2005.06840, arXiv.org, revised Aug 2021.
    12. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    13. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    3. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    4. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    5. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    6. Arjen van Lin & Els Gijsbrechts, 2019. "“Hello Jumbo!” The Spatio-Temporal Rollout and Traffic to a New Grocery Chain After Acquisition," Management Science, INFORMS, vol. 67(5), pages 2388-2411, May.
    7. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    8. Michał Kot, 2022. "An agent-based model of consumer choice. An evaluation of the strategy of pricing and advertising," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 73-95.
    9. Keane, M.P. & Thorp, S., 2016. "Complex Decision Making," Handbook of the Economics of Population Aging, in: Piggott, John & Woodland, Alan (ed.), Handbook of the Economics of Population Aging, edition 1, volume 1, chapter 0, pages 661-709, Elsevier.
    10. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    11. Michael P. Keane, 2013. "Panel data discrete choice models of consumer demand," Economics Papers 2013-W08, Economics Group, Nuffield College, University of Oxford.
    12. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    13. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    14. Mandy Mantian Hu & Sha Yang & Daniel Yi Xu, 2019. "Understanding the Social Learning Effect in Contagious Switching Behavior," Management Science, INFORMS, vol. 65(10), pages 4771-4794, October.
    15. Michael P. Keane & Susan Thorp, 2016. "Complex Decision Making: The Roles of Cognitive Limitations, Cognitive Decline and Ageing," Economics Papers 2016-W10, Economics Group, Nuffield College, University of Oxford.
    16. Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
    17. Ching, Andrew T., 2010. "Consumer learning and heterogeneity: Dynamics of demand for prescription drugs after patent expiration," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 619-638, November.
    18. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    19. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    20. Marcoul, Philippe & Weninger, Quinn, 2008. "Search and active learning with correlated information: Empirical evidence from mid-Atlantic clam fishermen," Journal of Economic Dynamics and Control, Elsevier, vol. 32(6), pages 1921-1948, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-319-56941-3_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.