IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i9p959-d78569.html
   My bibliography  Save this article

Sea-Level Rise and Land Subsidence: Impacts on Flood Projections for the Mekong Delta’s Largest City

Author

Listed:
  • Hiroshi Takagi

    (Tokyo Institute of Technology, School of Environment and Society, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan)

  • Nguyen Danh Thao

    (Faculty of Civil Engineering, Ho Chi Minh City University of Technology, 268 Ly Thuong Kiet St., Dist.10, Ho Chi Minh City 700000, Vietnam)

  • Le Tuan Anh

    (Tokyo Institute of Technology, School of Environment and Society, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan)

Abstract

The present paper demonstrates that inundation levels in the Mekong Delta’s largest city, Can Tho, are predominantly determined by ocean tides, sea-level rise, and land subsidence. Our analysis of inundation patterns projects that the duration of inundation at an important road in the city will continue to rise from the current total of 72 inundated days per year to 270 days by 2030 and 365 days by 2050. This is attributed to the combined influence of sea-level rise and land subsidence, which causes relative water level rises at a rate of 22.3 mm·yr −1 . People in the Mekong Delta have traditionally lived with floods, and thus there is certain resilience among residents in coping with small floods. At present, daily maximum inundation depth, which is generally shallower than 10 cm on the road, seems to be still manageable; however, our analysis indicates that this will start drastically increasing in the coming decades and reach an average depth of 70 cm by 2050. Effective and well-planned actions to mitigate the effects of land subsidence and sea-level rise are urgently required, otherwise, local inhabitants will encounter an unmanageable increase in inundation depth and duration in the coming decades. This study, which considers both sea-level rise and land subsidence, suggests that inundation depth and duration are projected to rise much faster than those indicated by previous studies, which only consider sea-level rise.

Suggested Citation

  • Hiroshi Takagi & Nguyen Danh Thao & Le Tuan Anh, 2016. "Sea-Level Rise and Land Subsidence: Impacts on Flood Projections for the Mekong Delta’s Largest City," Sustainability, MDPI, vol. 8(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:959-:d:78569
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/9/959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/9/959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher S. Watson & Neil J. White & John A. Church & Matt A. King & Reed J. Burgette & Benoit Legresy, 2015. "Unabated global mean sea-level rise over the satellite altimeter era," Nature Climate Change, Nature, vol. 5(6), pages 565-568, June.
    2. Dasgupta, Susmita & Laplante, Benoit & Meisner, Craig & Wheeler, David & Jianping Yan, 2007. "The impact of sea level rise on developing countries : a comparative analysis," Policy Research Working Paper Series 4136, The World Bank.
    3. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    4. A. Smajgl & T. Q. Toan & D. K. Nhan & J. Ward & N. H. Trung & L. Q. Tri & V. P. D. Tri & P. T. Vu, 2015. "Responding to rising sea levels in the Mekong Delta," Nature Climate Change, Nature, vol. 5(2), pages 167-174, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toledo-Gallegos, Valeria M. & My, Nguyen H.D. & Tuan, Tran Huu & Börger, Tobias, 2022. "Valuing ecosystem services and disservices of blue/green infrastructure. Evidence from a choice experiment in Vietnam," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 114-128.
    2. Hiroshi Takagi & Daisuke Fujii & Miguel Esteban & Xiong Yi, 2017. "Effectiveness and Limitation of Coastal Dykes in Jakarta: The Need for Prioritizing Actions against Land Subsidence," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    3. Hiroshi Takagi, 2018. "Long-Term Design of Mangrove Landfills as an Effective Tide Attenuator under Relative Sea-Level Rise," Sustainability, MDPI, vol. 10(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rania A. Bekheet & Mohamed El Raey & Alaa-El-Din Yassin, 2017. "The crestline approach for assessing the development of coastal flooding due to sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 1113-1130, October.
    2. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    3. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    4. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Dang, Hoa Le & Pham, Thuyen Thi & Hong Pham, Nhung Thi & Pham, Nam Khanh, 2024. "Gender differences in adaptation strategies to salinity intrusion in the Mekong Delta, Vietnam: An intra-household analysis," EfD Discussion Paper 24-2, Environment for Development, University of Gothenburg.
    6. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    7. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    9. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    10. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. B. Sudhakara Reddy & Gaudenz B. Assenza, 2008. "The Great climate debate : A Developing country perspective," Indira Gandhi Institute of Development Research, Mumbai Working Papers 2008-008, Indira Gandhi Institute of Development Research, Mumbai, India.
    12. Kwasi Appeaning Addo, 2015. "Monitoring sea level rise-induced hazards along the coast of Accra in Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1293-1307, September.
    13. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    14. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    15. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    16. P. Ward & M. Marfai & F. Yulianto & D. Hizbaron & J. Aerts, 2011. "Coastal inundation and damage exposure estimation: a case study for Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 899-916, March.
    17. Fant, Charles & Gebretsadik, Yohannes & Strzepek, Kenneth, 2012. "Impact of Climate Change on Irrigation, Crops and Hydropower in Vietnam," WIDER Working Paper Series 079, World Institute for Development Economic Research (UNU-WIDER).
    18. Rong, Fang, 2010. "Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa," Energy Policy, Elsevier, vol. 38(8), pages 4582-4591, August.
    19. Kousky, Carolyn & Rostapshova, Olga & Toman, Michael & Zeckhauser, Richard, 2009. "Responding to threats of climate change mega-catastrophes," Policy Research Working Paper Series 5127, The World Bank.
    20. Matthias Garschagen, 2013. "Resilience and organisational institutionalism from a cross-cultural perspective: an exploration based on urban climate change adaptation in Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(1), pages 25-46, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:9:p:959-:d:78569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.