IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-30076-2.html
   My bibliography  Save this article

Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming

Author

Listed:
  • Adam D. Sproson

    (The University of Tokyo
    Japan Agency for Marine-Earth Science and Technology)

  • Yusuke Yokoyama

    (The University of Tokyo
    Japan Agency for Marine-Earth Science and Technology
    The University of Tokyo
    The University of Tokyo)

  • Yosuke Miyairi

    (The University of Tokyo)

  • Takahiro Aze

    (The University of Tokyo)

  • Rebecca L. Totten

    (The University of Alabama)

Abstract

The primary Antarctic contribution to modern sea-level rise is glacial discharge from the Amundsen Sea sector of the West Antarctic Ice Sheet. The main processes responsible for ice mass loss include: (1) ocean-driven melting of ice shelves by upwelling of warm water onto the continental shelf; and (2) atmospheric-driven surface melting of glaciers along the Antarctic coast. Understanding the relative influence of these processes on glacial stability is imperative to predicting sea-level rise. Employing a beryllium isotope-based reconstruction of ice-shelf history, we demonstrate that glaciers flowing into the Amundsen Sea Embayment underwent melting and retreat between 9 and 6 thousand years ago. Despite warm ocean water influence, this melting event was mainly forced by atmospheric circulation changes over continental West Antarctica, linked via a Rossby wave train to tropical Pacific Ocean warming. This millennial-scale glacial history may be used to validate contemporary ice-sheet models and improve sea-level projections.

Suggested Citation

  • Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30076-2
    DOI: 10.1038/s41467-022-30076-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-30076-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-30076-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Mulvaney & Nerilie J. Abram & Richard C. A. Hindmarsh & Carol Arrowsmith & Louise Fleet & Jack Triest & Louise C. Sime & Olivier Alemany & Susan Foord, 2012. "Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history," Nature, Nature, vol. 489(7414), pages 141-144, September.
    2. A. E. Shevenell & A. E. Ingalls & E. W. Domack & C. Kelly, 2011. "Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula," Nature, Nature, vol. 470(7333), pages 250-254, February.
    3. James A. Smith & Alastair G. C. Graham & Alix L. Post & Claus-Dieter Hillenbrand & Philip J. Bart & Ross D. Powell, 2019. "The marine geological imprint of Antarctic ice shelves," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    4. A. E. Shevenell & A. E. Ingalls & E. W. Domack & C. Kelly, 2011. "Erratum: Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula," Nature, Nature, vol. 472(7342), pages 247-247, April.
    5. N. R. Golledge & L. Menviel & L. Carter & C. J. Fogwill & M. H. England & G. Cortese & R. H. Levy, 2014. "Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
    6. David Pollard & Robert M. DeConto, 2009. "Modelling West Antarctic ice sheet growth and collapse through the past five million years," Nature, Nature, vol. 458(7236), pages 329-332, March.
    7. Robin E. Bell & Alison F. Banwell & Luke D. Trusel & Jonathan Kingslake, 2018. "Antarctic surface hydrology and impacts on ice-sheet mass balance," Nature Climate Change, Nature, vol. 8(12), pages 1044-1052, December.
    8. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    9. Claus-Dieter Hillenbrand & James A. Smith & David A. Hodell & Mervyn Greaves & Christopher R. Poole & Sev Kender & Mark Williams & Thorbjørn Joest Andersen & Patrycja E. Jernas & Henry Elderfield & Jo, 2017. "West Antarctic Ice Sheet retreat driven by Holocene warm water incursions," Nature, Nature, vol. 547(7661), pages 43-48, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Li & Laura F. Robinson & Graeme A. MacGilchrist & Tianyu Chen & Joseph A. Stewart & Andrea Burke & Maoyu Wang & Gaojun Li & Jun Chen & James W. B. Rae, 2023. "Enhanced subglacial discharge from Antarctica during meltwater pulse 1A," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Li & Robert M. DeConto & David Pollard & Yongyun Hu, 2024. "Competing climate feedbacks of ice sheet freshwater discharge in a warming world," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Ilaria Crotti & Aurélien Quiquet & Amaelle Landais & Barbara Stenni & David J. Wilson & Mirko Severi & Robert Mulvaney & Frank Wilhelms & Carlo Barbante & Massimo Frezzotti, 2022. "Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Nicholas R. Golledge, 2020. "Long‐term projections of sea‐level rise from ice sheets," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    4. Michael E. Weber & Nicholas R. Golledge & Chris J. Fogwill & Chris S. M. Turney & Zoë A. Thomas, 2021. "Decadal-scale onset and termination of Antarctic ice-mass loss during the last deglaciation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    6. Jennifer F. Arthur & Chris R. Stokes & Stewart S. R. Jamieson & J. Rachel Carr & Amber A. Leeson & Vincent Verjans, 2022. "Large interannual variability in supraglacial lakes around East Antarctica," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. David K. Hutchinson & Laurie Menviel & Katrin J. Meissner & Andrew McC. Hogg, 2024. "East Antarctic warming forced by ice loss during the Last Interglacial," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Federica Donda & Michele Rebesco & Vedrana Kovacevic & Alessandro Silvano & Manuel Bensi & Laura Santis & Yair Rosenthal & Fiorenza Torricella & Luca Baradello & Davide Gei & Amy Leventer & Alix Post , 2024. "Footprint of sustained poleward warm water flow within East Antarctic submarine canyons," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    10. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    12. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    13. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
    15. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    16. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    17. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    18. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
    20. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30076-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.