IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i5d10.1007_s11027-018-9831-y.html
   My bibliography  Save this article

Reducing sea level rise with submerged barriers and dams in Greenland

Author

Listed:
  • Julian David Hunt

    (International Institute of Applied Systems Analsys (IIASA))

  • Edward Byers

    (International Institute of Applied Systems Analsys (IIASA))

Abstract

Sea levels have been rising at an increasing rate in the past decades, due to the increased ocean temperatures and glacier melt caused by global warming. The continued increase in sea levels will result in large-scale impacts in coastal areas as they are submerged by the sea. Locations not able to bear the costs of implementing protection and adaptation measures will have to be abandoned, resulting in social, economic, and environmental losses. The most important mitigation goal for sea level rise is to reduce or possibly revert carbon dioxide (CO2) emissions. However, given the magnitude and long time lag between emissions and impacts, new adaptation measures to reduce sea level rise should be proposed, developed and if possible, implemented. This paper suggests that submerged barriers or dams built in front of ice sheets and glaciers would contribute to reducing the ice melt in Greenland. The ten proposed barriers or dams in this paper could prevent the contribution to sea level rise by up to 5.3 m at a cost of US$ 0.275 billion a year. This is much lower when compared to adaptation measures to sea level rise around the world estimated to be US$ 1.4 trillion a year by 2100.

Suggested Citation

  • Julian David Hunt & Edward Byers, 2019. "Reducing sea level rise with submerged barriers and dams in Greenland," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 779-794, June.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:5:d:10.1007_s11027-018-9831-y
    DOI: 10.1007/s11027-018-9831-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9831-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9831-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Lacerda & C. Silva & C. Pimenteira & R. Kopp & R. Grumback & L. Rosa & M. Freitas, 2014. "Guidelines for the strategic management of flood risks in industrial plant oil in the Brazilian coast: adaptive measures to the impacts by relative sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(7), pages 1041-1062, October.
    2. D. Babu & Siva Sivalingam & Terry Machado, 2012. "Need for adaptation strategy against global sea level rise: an example from Saudi coast of Arabian gulf," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(7), pages 821-836, October.
    3. Jochen Hinkel & Robert Nicholls & Athanasios Vafeidis & Richard Tol & Thaleia Avagianou, 2010. "Assessing risk of and adaptation to sea-level rise in the European Union: an application of DIVA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 703-719, October.
    4. Omran Frihy & Mahmoud El-Sayed, 2013. "Vulnerability risk assessment and adaptation to climate change induced sea level rise along the Mediterranean coast of Egypt," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1215-1237, December.
    5. Andrew Ashton & Jeffrey Donnelly & Rob Evans, 2008. "A discussion of the potential impacts of climate change on the shorelines of the Northeastern USA," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(7), pages 719-743, August.
    6. Brenda Lin & Yong Khoo & Matthew Inman & Chi-Hsiang Wang & Sorada Tapsuwan & Xiaoming Wang, 2014. "Assessing inundation damage and timing of adaptation: sea level rise and the complexities of land use in coastal communities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(5), pages 551-568, June.
    7. Robert M. DeConto & David Pollard, 2016. "Contribution of Antarctica to past and future sea-level rise," Nature, Nature, vol. 531(7596), pages 591-597, March.
    8. Matthias Mengel & Alexander Nauels & Joeri Rogelj & Carl-Friedrich Schleussner, 2018. "Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    9. John C. Moore & Rupert Gladstone & Thomas Zwinger & Michael Wolovick, 2018. "Geoengineer polar glaciers to slow sea-level rise," Nature, Nature, vol. 555(7696), pages 303-305, March.
    10. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John C. Moore & Ilona Mettiäinen & Michael Wolovick & Liyun Zhao & Rupert Gladstone & Ying Chen & Stefan Kirchner & Timo Koivurova, 2021. "Targeted Geoengineering: Local Interventions with Global Implications," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 108-118, April.
    2. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frans Klijn & Bruno Merz & Edmund Penning-Rowsell & Zbigniew Kundzewicz, 2015. "Preface: climate change proof flood risk management," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(6), pages 837-843, August.
    2. John C. Moore & Ilona Mettiäinen & Michael Wolovick & Liyun Zhao & Rupert Gladstone & Ying Chen & Stefan Kirchner & Timo Koivurova, 2021. "Targeted Geoengineering: Local Interventions with Global Implications," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 108-118, April.
    3. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    4. Joanna Ellison & Pippa Strickland, 2015. "Establishing relative sea level trends where a coast lacks a long term tide gauge," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1211-1227, October.
    5. Cara Nissen & Ralph Timmermann & Mario Hoppema & Özgür Gürses & Judith Hauck, 2022. "Abruptly attenuated carbon sequestration with Weddell Sea dense waters by 2100," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. L. Oosterhout & E. Koks & P. Beukering & S. Schep & T. Tiggeloven & S. Manen & M. Knaap & C. Duinmeijer & S. L. Buijs, 2023. "An Integrated Assessment of Climate Change Impacts and Implications on Bonaire," Economics of Disasters and Climate Change, Springer, vol. 7(2), pages 147-178, July.
    7. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    8. Adam D. Sproson & Yusuke Yokoyama & Yosuke Miyairi & Takahiro Aze & Rebecca L. Totten, 2022. "Holocene melting of the West Antarctic Ice Sheet driven by tropical Pacific warming," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    10. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    11. Jun-Young Park & Fabian Schloesser & Axel Timmermann & Dipayan Choudhury & June-Yi Lee & Arjun Babu Nellikkattil, 2023. "Future sea-level projections with a coupled atmosphere-ocean-ice-sheet model," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Frankie St. Amand & Daniel H. Sandweiss & Alice R. Kelley, 2020. "Climate-driven migration: prioritizing cultural resources threatened by secondary impacts of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1761-1781, September.
    13. Kristina Hill, 2016. "Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning," Urban Planning, Cogitatio Press, vol. 1(4), pages 103-113.
    14. Klaus Desmet & Robert E. Kopp & Scott A. Kulp & Dávid Krisztián Nagy & Michael Oppenheimer & Esteban Rossi-Hansberg & Benjamin H. Strauss, 2021. "Evaluating the Economic Cost of Coastal Flooding," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(2), pages 444-486, April.
    15. Mutsumi Iizuka & Osamu Seki & David J. Wilson & Yusuke Suganuma & Keiji Horikawa & Tina Flierdt & Minoru Ikehara & Takuya Itaki & Tomohisa Irino & Masanobu Yamamoto & Motohiro Hirabayashi & Hiroyuki M, 2023. "Multiple episodes of ice loss from the Wilkes Subglacial Basin during the Last Interglacial," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Zhiyi Lin & Minerva Singh, 2024. "Assessing Coastal Vulnerability and Evaluating the Effectiveness of Natural Habitats in Enhancing Coastal Resilience: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 16(2), pages 1-23, January.
    17. Tobias Lung & Alessandro Dosio & William Becker & Carlo Lavalle & Laurens Bouwer, 2013. "Assessing the influence of climate model uncertainty on EU-wide climate change impact indicators," Climatic Change, Springer, vol. 120(1), pages 211-227, September.
    18. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    19. Yashna Devi Beeharry & Girish Bekaroo & Chandradeo Bokhoree & Michael Robert Phillips, 2022. "Impacts of sea-level rise on coastal zones of Mauritius: insights following calculation of a coastal vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 27-55, October.
    20. Susmita Dasgupta & Mainul Huq & Istiak Sobhan & David Wheeler, 2018. "Sea-Level Rise and Species Conservation in Bangladesh¡¯s Sundarbans Region," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(1), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:5:d:10.1007_s11027-018-9831-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.