A Review of Electro-Mechanical Brake (EMB) System: Structure, Control and Application
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bo Liang & Yuqing Zhu & Yuren Li & Pengju He & Weilin Li, 2017. "Adaptive Nonsingular Fast Terminal Sliding Mode Control for Braking Systems with Electro-Mechanical Actuators Based on Radial Basis Function," Energies, MDPI, vol. 10(10), pages 1-15, October.
- Sinha, Purnendu, 2011. "Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1349-1359.
- Sangjune Eum & Jihun Choi & Sang-Shin Park & Changhee Yoo & Kanghyun Nam, 2017. "Robust Clamping Force Control of an Electro-Mechanical Brake System for Application to Commercial City Buses," Energies, MDPI, vol. 10(2), pages 1-12, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
- Yinhang Wang & Liqing Zhou & Liang Chu & Di Zhao & Zhiqi Guo & Zewei Jiang, 2024. "A Multi-Source Braking Force Control Method for Electric Vehicles Considering Energy Economy," Energies, MDPI, vol. 17(9), pages 1-31, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Seung-Koo Baek & Hyuck-Keun Oh & Joon-Hyuk Park & Yu-Jeong Shin & Seog-Won Kim, 2019. "Evaluation of Efficient Operation for Electromechanical Brake Using Maximum Torque per Ampere Control," Energies, MDPI, vol. 12(10), pages 1-13, May.
- Seung-Koo Baek & Hyuck-Keun Oh & Seog-Won Kim & Sung-Il Seo, 2018. "A Clamping Force Performance Evaluation of the Electro Mechanical Brake Using PMSM," Energies, MDPI, vol. 11(11), pages 1-12, October.
- Jing Li & Tong Wu & Tianxin Fan & Yan He & Lingshuai Meng & Zuoyue Han, 2020. "Clamping force control of electro–mechanical brakes based on driver intentions," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-30, September.
- Huang, Chao & Li, Liang, 2020. "Architectural design and analysis of a steer-by-wire system in view of functional safety concept," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
- Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
- Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
- Huang, Shuang & Zhou, Chunjie & Yang, Lili & Qin, Yuanqing & Huang, Xiongfeng & Hu, Bowen, 2016. "Transient fault tolerant control for vehicle brake-by-wire systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 148-163.
- Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
- Beckers, Kristian & Côté, Isabelle & Frese, Thomas & Hatebur, Denis & Heisel, Maritta, 2017. "A structured and systematic model-based development method for automotive systems, considering the OEM/supplier interface," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 172-184.
- Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Schranner, Felix S. & Misheni, Alireza Abassi & Warnecke, Jork, 2021. "Deriving a representative variant for the functional safety development according to ISO 26262," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.
More about this item
Keywords
automobile; electro-mechanical brake; actuator; clamping force control; application;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4514-:d:1086286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.