IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224014725.html
   My bibliography  Save this article

Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions

Author

Listed:
  • Zhou, Xiaochuan
  • Wu, Gang
  • Wang, Chunyan
  • Zhang, Ruijun
  • Shi, Shuaipeng
  • Zhao, Wanzhong

Abstract

Regenerative braking can effectively recover vehicle kinetic energy, but its energy conversion efficiency is low under low-speed conditions, and there is also the problem of premature exit from energy recovery due to insufficient reverse electromotive force. The cooperation of gearbox gears can increase the speed range for the motor to recover energy, but unreasonable shifting will cause fluctuations in braking force and affect the consistency of the braking feel. Therefore, this paper aims to collaboratively optimize energy recovery and braking force fluctuations during gear shifting. Firstly, based on the model of braking system and transmission, the influence of shift strategy on braking impact and energy recovery is studied. In view of the challenge of determining a shift strategy with uncertain target braking speeds, a speed prediction model reconstructed by the support vector regression (SVR) model and the hybrid nonlinear autoregressive neural network (NAR) is proposed. On the basis of NAR-SVR speed prediction, the coupling effect of braking impact force and energy recovery efficiency is considered, and the collaborative optimization of regenerative braking torque and shift time is solved through a multi-objective cuckoo search algorithm. The hardware-in-the-loop test results verified that under high-speed conditions, the braking energy recovery rate of the proposed strategy was increased by 47.06 %, and the peak braking impact was reduced by 61.4 %. This research can provide a reference for the brake downshift optimization strategy and regenerative braking research of vehicles with non-decoupled electro-hydraulic composite braking systems.

Suggested Citation

  • Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014725
    DOI: 10.1016/j.energy.2024.131699
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224014725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.