IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i10p1349-1359.html
   My bibliography  Save this article

Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives

Author

Listed:
  • Sinha, Purnendu

Abstract

Next generation drive-by-wire automotive systems enabling autonomous driving will build on the fail-operational capabilities of electronics, control and software (ECS) architectural solutions. Developing such architectural designs that would meet dependability requirements and satisfy other system constraints is a challenging task and will possibly lead to a paradigm shift in automotive ECS architecture design and development activities. This aspect is becoming quite relevant while designing battery-driven electric vehicles with integrated in-wheel drive-train and chassis subsystems.

Suggested Citation

  • Sinha, Purnendu, 2011. "Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1349-1359.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1349-1359
    DOI: 10.1016/j.ress.2011.03.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201100041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.03.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beckers, Kristian & Côté, Isabelle & Frese, Thomas & Hatebur, Denis & Heisel, Maritta, 2017. "A structured and systematic model-based development method for automotive systems, considering the OEM/supplier interface," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 172-184.
    2. Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Huang, Chao & Li, Liang, 2020. "Architectural design and analysis of a steer-by-wire system in view of functional safety concept," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Schranner, Felix S. & Misheni, Alireza Abassi & Warnecke, Jork, 2021. "Deriving a representative variant for the functional safety development according to ISO 26262," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    6. Huang, Shuang & Zhou, Chunjie & Yang, Lili & Qin, Yuanqing & Huang, Xiongfeng & Hu, Bowen, 2016. "Transient fault tolerant control for vehicle brake-by-wire systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 148-163.
    7. Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Congcong Li & Guirong Zhuo & Chen Tang & Lu Xiong & Wei Tian & Le Qiao & Yulin Cheng & Yanlong Duan, 2023. "A Review of Electro-Mechanical Brake (EMB) System: Structure, Control and Application," Sustainability, MDPI, vol. 15(5), pages 1-38, March.
    9. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    10. Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1349-1359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.