IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v158y2017icp172-184.html
   My bibliography  Save this article

A structured and systematic model-based development method for automotive systems, considering the OEM/supplier interface

Author

Listed:
  • Beckers, Kristian
  • Côté, Isabelle
  • Frese, Thomas
  • Hatebur, Denis
  • Heisel, Maritta

Abstract

The released ISO 26262 standard for automotive systems requires to create a hazard analysis and risk assessment and to create safety goals, to break down these safety goals into functional safety requirements in the functional safety concept, to specify technical safety requirements in the safety requirements specification, and to perform several validation and verification activities. Experience shows that the definition of technical safety requirements and the planning and execution of validation and verification activities has to be done jointly by OEMs and suppliers. In this paper, we present a structured and model-based safety development approach for automotive systems. The different steps are based on Jackson's requirement engineering. The elements are represented by UML notation extended with stereotypes. The UML model enables a rigorous validation of several constraints. We make use of the results of previously published work to be able to focus on the OEM/supplier interface. We illustrate our method using a three-wheeled-tilting control system (3WTC) as running example and case study.

Suggested Citation

  • Beckers, Kristian & Côté, Isabelle & Frese, Thomas & Hatebur, Denis & Heisel, Maritta, 2017. "A structured and systematic model-based development method for automotive systems, considering the OEM/supplier interface," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 172-184.
  • Handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:172-184
    DOI: 10.1016/j.ress.2016.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016304057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinha, Purnendu, 2011. "Architectural design and reliability analysis of a fail-operational brake-by-wire system from ISO 26262 perspectives," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1349-1359.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    2. Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    3. Huang, Shuang & Zhou, Chunjie & Yang, Lili & Qin, Yuanqing & Huang, Xiongfeng & Hu, Bowen, 2016. "Transient fault tolerant control for vehicle brake-by-wire systems," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 148-163.
    4. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    5. Congcong Li & Guirong Zhuo & Chen Tang & Lu Xiong & Wei Tian & Le Qiao & Yulin Cheng & Yanlong Duan, 2023. "A Review of Electro-Mechanical Brake (EMB) System: Structure, Control and Application," Sustainability, MDPI, vol. 15(5), pages 1-38, March.
    6. Huang, Chao & Li, Liang, 2020. "Architectural design and analysis of a steer-by-wire system in view of functional safety concept," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Pauer, Gábor & Török, à rpád, 2022. "Introducing a novel safety assessment method through the example of a reduced complexity binary integer autonomous transport model," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Schranner, Felix S. & Misheni, Alireza Abassi & Warnecke, Jork, 2021. "Deriving a representative variant for the functional safety development according to ISO 26262," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    9. Mahajan, Haneet Singh & Bradley, Thomas & Pasricha, Sudeep, 2017. "Application of systems theoretic process analysis to a lane keeping assist system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 177-183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:172-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.