IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1869-d231742.html
   My bibliography  Save this article

Evaluation of Efficient Operation for Electromechanical Brake Using Maximum Torque per Ampere Control

Author

Listed:
  • Seung-Koo Baek

    (Department of Next Generation Railroad Train Research Center, Korea Railroad Research Institute, 176, Cheoldo Bangmulgwan-ro, Uiwang-si, Gyeonggi-Do 437-757, Korea)

  • Hyuck-Keun Oh

    (Department of Next Generation Railroad Train Research Center, Korea Railroad Research Institute, 176, Cheoldo Bangmulgwan-ro, Uiwang-si, Gyeonggi-Do 437-757, Korea)

  • Joon-Hyuk Park

    (Department of Next Generation Railroad Train Research Center, Korea Railroad Research Institute, 176, Cheoldo Bangmulgwan-ro, Uiwang-si, Gyeonggi-Do 437-757, Korea)

  • Yu-Jeong Shin

    (Department of Next Generation Railroad Train Research Center, Korea Railroad Research Institute, 176, Cheoldo Bangmulgwan-ro, Uiwang-si, Gyeonggi-Do 437-757, Korea)

  • Seog-Won Kim

    (Department of Next Generation Railroad Train Research Center, Korea Railroad Research Institute, 176, Cheoldo Bangmulgwan-ro, Uiwang-si, Gyeonggi-Do 437-757, Korea)

Abstract

This paper deals with efficient operation method for the electromechanical brake (EMB). A three-phase interior permanent magnet synchronous motor (IPMSM) is applied to the EMB operation. A current controller, speed controller, and position controller based on proportional-integral (PI) control are used to drive the IPMSM. Maximum torque per ampere (MTPA) control is applied to the current controller to perform efficient control. For MTPA control, the angle β is calculated from total input current, and the synchronous frame d–q axis current reference is determined by the angle β . The IPMSM is designed and analyzed with finite element analysis (FEA) software and current control is simulated by Matlab/Simulink using a motor model designed by FEA software. The simulation results were verified to compare with experimental results that are input current and clamping force of caliper. In addition, the experimental results showed that the energy consumption is reduced by MTPA.

Suggested Citation

  • Seung-Koo Baek & Hyuck-Keun Oh & Joon-Hyuk Park & Yu-Jeong Shin & Seog-Won Kim, 2019. "Evaluation of Efficient Operation for Electromechanical Brake Using Maximum Torque per Ampere Control," Energies, MDPI, vol. 12(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1869-:d:231742
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo Liang & Yuqing Zhu & Yuren Li & Pengju He & Weilin Li, 2017. "Adaptive Nonsingular Fast Terminal Sliding Mode Control for Braking Systems with Electro-Mechanical Actuators Based on Radial Basis Function," Energies, MDPI, vol. 10(10), pages 1-15, October.
    2. Seung-Koo Baek & Hyuck-Keun Oh & Seog-Won Kim & Sung-Il Seo, 2018. "A Clamping Force Performance Evaluation of the Electro Mechanical Brake Using PMSM," Energies, MDPI, vol. 11(11), pages 1-12, October.
    3. Sangjune Eum & Jihun Choi & Sang-Shin Park & Changhee Yoo & Kanghyun Nam, 2017. "Robust Clamping Force Control of an Electro-Mechanical Brake System for Application to Commercial City Buses," Energies, MDPI, vol. 10(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton Dianov & Alecksey Anuchin, 2021. "Design of Constraints for Seeking Maximum Torque per Ampere Techniques in an Interior Permanent Magnet Synchronous Motor Control," Mathematics, MDPI, vol. 9(21), pages 1-21, November.
    2. Marcin Jastrzębski & Jacek Kabziński, 2021. "Approximation of Permanent Magnet Motor Flux Distribution by Partially Informed Neural Networks," Energies, MDPI, vol. 14(18), pages 1-21, September.
    3. Anton Dianov & Alecksey Anuchin, 2020. "Adaptive Maximum Torque per Ampere Control of Sensorless Permanent Magnet Motor Drives," Energies, MDPI, vol. 13(19), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Congcong Li & Guirong Zhuo & Chen Tang & Lu Xiong & Wei Tian & Le Qiao & Yulin Cheng & Yanlong Duan, 2023. "A Review of Electro-Mechanical Brake (EMB) System: Structure, Control and Application," Sustainability, MDPI, vol. 15(5), pages 1-38, March.
    2. Seung-Koo Baek & Hyuck-Keun Oh & Seog-Won Kim & Sung-Il Seo, 2018. "A Clamping Force Performance Evaluation of the Electro Mechanical Brake Using PMSM," Energies, MDPI, vol. 11(11), pages 1-12, October.
    3. Jing Li & Tong Wu & Tianxin Fan & Yan He & Lingshuai Meng & Zuoyue Han, 2020. "Clamping force control of electro–mechanical brakes based on driver intentions," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-30, September.
    4. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    5. Soo-Whang Baek & Keun-Young Yoon, 2019. "Improving the Hybrid Electromagnetic Clamping System by Reducing the Leakage Flux and Enhancing the Effective Flux," Energies, MDPI, vol. 12(19), pages 1-15, October.
    6. Francesca Oliva & Roberto Sebastiano Faranda, 2023. "Energy Efficiency in Electromagnetic and Electro-Permanent Lifting Systems," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1869-:d:231742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.