IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3405-d348695.html
   My bibliography  Save this article

A Survey on Integration of Optimization and Project Management Tools for Sustainable Construction Scheduling

Author

Listed:
  • Borna Dasović

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

  • Mario Galić

    (Faculty of Civil Engineering and Architecture Osijek, Josip Juraj Strossmayer University of Osijek, Ulica Vladimira Preloga 3, 31000 Osijek, Croatia)

  • Uroš Klanšek

    (Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia)

Abstract

Construction scheduling, in practice, commonly relies on the usage of commercial project management tools (PMT) without specific optimization features. To obtain optimal schedules, planners often need to develop separate optimization models with special tools, which, however, demand further processing and editing of optimization results by PMT into forms expected for project management. In this regard, separation of optimization and PMT also requires considerable additional work for complete and harmonized updating of schedules during construction execution. Mentioned drawbacks and lack of available time may take to deficient construction scheduling during the implementation phase resulting in poor or even insufficient realization of project goals. Therefore, this paper presents an achievements survey on the integration of optimization and PMT that allow sustainable construction scheduling, particularly in terms of continuous optimal time and resource allocation throughout the project life cycle. Such work has not yet been comprehensively done up to now and the present contribution intends to fill a literature gap in the aforesaid area. Following a brief introduction, the optimization platform for construction scheduling is given in the article. Focusing on construction scheduling, an in-depth achievements survey on the integration of heuristics methods, mathematical programming and special solving methods with conventional PMT as well as optimization-based building information modeling (BIM) tools is then performed and findings are reported. The paper ends with conclusions and recommendations for further research.

Suggested Citation

  • Borna Dasović & Mario Galić & Uroš Klanšek, 2020. "A Survey on Integration of Optimization and Project Management Tools for Sustainable Construction Scheduling," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3405-:d:348695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3405/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3405/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Servranckx, Tom & Vanhoucke, Mario, 2019. "A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs," European Journal of Operational Research, Elsevier, vol. 273(3), pages 841-860.
    2. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    3. WoonSeong Jeong & Soowon Chang & JeongWook Son & June-Seong Yi, 2016. "BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management," Sustainability, MDPI, vol. 8(11), pages 1-25, October.
    4. Lihua He & Lianying Zhang, 2013. "Dynamic priority rule-based forward-backward heuristic algorithm for resource levelling problem in construction project," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(8), pages 1106-1117, August.
    5. Konstantinos Anagnostopoulos & Georgios Koulinas, 2010. "A simulated annealing hyperheuristic for construction resource levelling," Construction Management and Economics, Taylor & Francis Journals, vol. 28(2), pages 163-175.
    6. Aidin Delgoshaei & Timon Rabczuk & Ahad Ali & Mohd Khairol Anuar Ariffin, 2017. "An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources," Annals of Operations Research, Springer, vol. 259(1), pages 85-117, December.
    7. Nashwan Dawood & Eknarin Sriprasert, 2006. "Construction scheduling using multi-constraint and genetic algorithms approach," Construction Management and Economics, Taylor & Francis Journals, vol. 24(1), pages 19-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyunghwan Kim, 2020. "Generalized Resource-Constrained Critical Path Method to Improve Sustainability in Construction Project Scheduling," Sustainability, MDPI, vol. 12(21), pages 1-19, October.
    2. Fernando Acebes & David Poza & Jose M Gonzalez-Varona & Javier Pajares & Adolfo Lopez-Paredes, 2024. "On the project risk baseline: integrating aleatory uncertainty into project scheduling," Papers 2406.00077, arXiv.org.
    3. Orlando Lima & Gabriela Fernandes & Anabela Tereso, 2023. "Benefits of Adopting Innovation and Sustainability Practices in Project Management within the SME Context," Sustainability, MDPI, vol. 15(18), pages 1-20, September.
    4. Michał Tomczak & Piotr Jaśkowski, 2021. "Preferences of Construction Managers Regarding the Quality and Optimization Criteria of Project Schedules," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    5. Wei He & Wenjing Li & Wei Wang, 2021. "Developing a Resource Allocation Approach for Resource-Constrained Construction Operation under Multi-Objective Operation," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    6. Borna Dasović & Uroš Klanšek, 2021. "Integration of Mixed-Integer Nonlinear Program and Project Management Tool to Support Sustainable Cost-Optimal Construction Scheduling," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    7. Čeněk Jarský & Miloslava Popenková & Jozef Gašparík & Patrik Šťastný, 2022. "On Use of Construction Technology Designs for Expert Opinions," Sustainability, MDPI, vol. 14(9), pages 1-12, May.
    8. YeEun Jang & JeongWook Son & June-Seong Yi, 2021. "Classifying the Level of Bid Price Volatility Based on Machine Learning with Parameters from Bid Documents as Risk Factors," Sustainability, MDPI, vol. 13(7), pages 1-18, April.
    9. Chia-Nan Wang & Nhat-Luong Nhieu & Trang Thi Thu Tran, 2021. "Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    10. Borna Dasović & Uroš Klanšek, 2022. "A Review of Energy-Efficient and Sustainable Construction Scheduling Supported with Optimization Tools," Energies, MDPI, vol. 15(7), pages 1-17, March.
    11. Mateusz Trzeciak & Izabela Jonek-Kowalska, 2021. "Monitoring and Control in Program Management as Effectiveness Drivers in Polish Energy Sector. Diagnosis and Directions of Improvement," Energies, MDPI, vol. 14(15), pages 1-25, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    2. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    3. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    4. Maryam Sadeghloo & Saeed Emami & Ali Divsalar, 2024. "A Benders decomposition algorithm for the multi-mode resource-constrained multi-project scheduling problem with uncertainty," Annals of Operations Research, Springer, vol. 339(3), pages 1637-1677, August.
    5. Borna Dasović & Uroš Klanšek, 2021. "Integration of Mixed-Integer Nonlinear Program and Project Management Tool to Support Sustainable Cost-Optimal Construction Scheduling," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    6. Estévez-Fernández, Arantza, 2012. "A game theoretical approach to sharing penalties and rewards in projects," European Journal of Operational Research, Elsevier, vol. 216(3), pages 647-657.
    7. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    8. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    9. Servranckx, Tom & Vanhoucke, Mario, 2019. "Strategies for project scheduling with alternative subgraphs under uncertainty: similar and dissimilar sets of schedules," European Journal of Operational Research, Elsevier, vol. 279(1), pages 38-53.
    10. Vega-Velázquez, Miguel Ángel & García-Nájera, Abel & Cervantes, Humberto, 2018. "A survey on the Software Project Scheduling Problem," International Journal of Production Economics, Elsevier, vol. 202(C), pages 145-161.
    11. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    12. Yuvraj Gajpal & Ashraf Elazouni, 2015. "Enhanced heuristic for finance-based scheduling of construction projects," Construction Management and Economics, Taylor & Francis Journals, vol. 33(7), pages 531-553, July.
    13. Alireza Etminaniesfahani & Hanyu Gu & Leila Moslemi Naeni & Amir Salehipour, 2024. "An efficient relax-and-solve method for the multi-mode resource constrained project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 41-68, July.
    14. Zezhou Wu & Changhong Chen & Yuzhu Cai & Chen Lu & Hao Wang & Tao Yu, 2019. "BIM-Based Visualization Research in the Construction Industry: A Network Analysis," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    15. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    16. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    17. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    18. Rodrigo F. Herrera & M. Amalia Sanz & Laura Montalbán-Domingo & Tatiana García-Segura & Eugenio Pellicer, 2019. "Impact of Game-Based Learning on Understanding Lean Construction Principles," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    19. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
    20. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3405-:d:348695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.