IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2406.00077.html
   My bibliography  Save this paper

On the project risk baseline: integrating aleatory uncertainty into project scheduling

Author

Listed:
  • Fernando Acebes
  • David Poza
  • Jose M Gonzalez-Varona
  • Javier Pajares
  • Adolfo Lopez-Paredes

Abstract

Obtaining a viable schedule baseline that meets all project constraints is one of the main issues for project managers. The literature on this topic focuses mainly on methods to obtain schedules that meet resource restrictions and, more recently, financial limitations. The methods provide different viable schedules for the same project, and the solutions with the shortest duration are considered the best-known schedule for that project. However, no tools currently select which schedule best performs in project risk terms. To bridge this gap, this paper aims to propose a method for selecting the project schedule with the highest probability of meeting the deadline of several alternative schedules with the same duration. To do so, we propose integrating aleatory uncertainty into project scheduling by quantifying the risk of several execution alternatives for the same project. The proposed method, tested with a well-known repository for schedule benchmarking, can be applied to any project type to help managers to select the project schedules from several alternatives with the same duration, but the lowest risk.

Suggested Citation

  • Fernando Acebes & David Poza & Jose M Gonzalez-Varona & Javier Pajares & Adolfo Lopez-Paredes, 2024. "On the project risk baseline: integrating aleatory uncertainty into project scheduling," Papers 2406.00077, arXiv.org.
  • Handle: RePEc:arx:papers:2406.00077
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2406.00077
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Behrouz Afshar-Nadjafi, 2016. "A new proactive approach to construct a robust baseline schedule considering quality factor," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 22(1), pages 63-72.
    2. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    3. Williams, Terry, 1995. "A classified bibliography of recent research relating to project risk management," European Journal of Operational Research, Elsevier, vol. 85(1), pages 18-38, August.
    4. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    5. Borna Dasović & Mario Galić & Uroš Klanšek, 2020. "A Survey on Integration of Optimization and Project Management Tools for Sustainable Construction Scheduling," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    6. Salman Kimiagari & Samira Keivanpour, 2019. "An interactive risk visualisation tool for large-scale and complex engineering and construction projects under uncertainty and interdependence," International Journal of Production Research, Taylor & Francis Journals, vol. 57(21), pages 6827-6855, November.
    7. Robert Pellerin & Nathalie Perrier, 2019. "A review of methods, techniques and tools for project planning and control," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2160-2178, April.
    8. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    9. Vanhoucke, Mario, 2011. "On the dynamic use of project performance and schedule risk information during projecttracking," Omega, Elsevier, vol. 39(4), pages 416-426, August.
    10. Prasanta K. Dey & Ben Clegg & Walid Cheffi, 2013. "Risk management in enterprise resource planning implementation: a new risk assessment framework," Post-Print hal-00812048, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colin, Jeroen & Vanhoucke, Mario, 2014. "Setting tolerance limits for statistical project control using earned value management," Omega, Elsevier, vol. 49(C), pages 107-122.
    2. Vaseghi, Forough & Martens, Annelies & Vanhoucke, Mario, 2024. "Analysis of the impact of corrective actions for stochastic project networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 503-518.
    3. Vanhoucke, Mario & Colin, Jeroen, 2016. "On the use of multivariate regression methods for longest path calculations from earned value management observations," Omega, Elsevier, vol. 61(C), pages 127-140.
    4. Martens, Annelies & Vanhoucke, Mario, 2019. "The impact of applying effort to reduce activity variability on the project time and cost performance," European Journal of Operational Research, Elsevier, vol. 277(2), pages 442-453.
    5. Song, Jie & Martens, Annelies & Vanhoucke, Mario, 2022. "Using Earned Value Management and Schedule Risk Analysis with resource constraints for project control," European Journal of Operational Research, Elsevier, vol. 297(2), pages 451-466.
    6. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
    7. Hajdu M. & Isaac S., 2016. "Sixty years of project planning: history and future," Organization, Technology and Management in Construction, Sciendo, vol. 8(1), pages 1499-1510, December.
    8. Martens, Annelies & Vanhoucke, Mario, 2017. "A buffer control method for top-down project control," European Journal of Operational Research, Elsevier, vol. 262(1), pages 274-286.
    9. Kim, Byung-Cheol, 2022. "Multi-factor dependence modelling with specified marginals and structured association in large-scale project risk assessment," European Journal of Operational Research, Elsevier, vol. 296(2), pages 679-695.
    10. Mateusz Trzeciak & Izabela Jonek-Kowalska, 2021. "Monitoring and Control in Program Management as Effectiveness Drivers in Polish Energy Sector. Diagnosis and Directions of Improvement," Energies, MDPI, vol. 14(15), pages 1-25, July.
    11. Zhao, Mingxuan & Zhou, Jian & Wang, Ke & Pantelous, Athanasios A., 2023. "Project scheduling problem with fuzzy activity durations: A novel operational law based solution framework," European Journal of Operational Research, Elsevier, vol. 306(2), pages 519-534.
    12. Kamburowski, J., 1997. "New validations of PERT times," Omega, Elsevier, vol. 25(3), pages 323-328, June.
    13. Xiong, Jian & Leus, Roel & Yang, Zhenyu & Abbass, Hussein A., 2016. "Evolutionary multi-objective resource allocation and scheduling in the Chinese navigation satellite system project," European Journal of Operational Research, Elsevier, vol. 251(2), pages 662-675.
    14. Richard E. Wendell & Timothy J. Lowe & Mike M. Gordon, 2023. "Dangers in using earned duration and other earned value metrics to measure a project’s schedule performance," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 665-680, June.
    15. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    16. David Roch-Dupré & Carlos Camacho-Gómez & Asunción P. Cucala & Silvia Jiménez-Fernández & Álvaro López-López & Antonio Portilla-Figueras & Ramón R. Pecharromán & Antonio Fernández-Cardador & Sancho Sa, 2021. "Optimal Location and Sizing of Energy Storage Systems in DC-Electrified Railway Lines Using a Coral Reefs Optimization Algorithm with Substrate Layers," Energies, MDPI, vol. 14(16), pages 1-19, August.
    17. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    18. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
    19. Pérez, José García & Martín, María del Mar López & García, Catalina García & Sánchez Granero, Miguel Ángel, 2016. "Project management under uncertainty beyond beta: The generalized bicubic distribution," Operations Research Perspectives, Elsevier, vol. 3(C), pages 67-76.
    20. Olav Torp & Ole Jonny Klakegg, 2016. "Challenges in Cost Estimation under Uncertainty—A Case Study of the Decommissioning of Barsebäck Nuclear Power Plant," Administrative Sciences, MDPI, vol. 6(4), pages 1-21, October.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2406.00077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.