IDEAS home Printed from https://ideas.repec.org/a/spr/snopef/v6y2025i1d10.1007_s43069-025-00415-2.html
   My bibliography  Save this article

h-NSDE—A Solution Algorithm for the Multi-objective Resource Leveling Problem

Author

Listed:
  • Marinos Aristotelous

    (University of Patras)

  • Andreas C. Nearchou

    (University of Patras)

Abstract

Consideration is given to the resource leveling problem (RLP) in resource-constrained project scheduling (RCPS). Although RLP has gained an increasing research interest, multiple optimization criteria are rarely considered simultaneously in the literature. In this paper, a multi-objective version of RLP is investigated aiming to simultaneously minimize the resource imbalance, the peak of the resource usage as well as the makespan. A metaheuristic algorithm is presented devoted to the search for Pareto-optimal RLP solutions. This algorithm constitutes an adaptation of h-NSDE (the hybrid non-dominated sorting differential evolution) which has recently shown excellent performance over a particular class of machine scheduling problems. Using existing benchmark data sets, we test the performance of h-NSDE in comparison to three of the most famous in the literature multi-objective population-based metaheuristics namely NSGA-II, SPEA2, and PAES. The results obtained are quite promising demonstrating a clear superiority of h-NSDE in terms of both the solution quality and diversity in regard to Pareto-front.

Suggested Citation

  • Marinos Aristotelous & Andreas C. Nearchou, 2025. "h-NSDE—A Solution Algorithm for the Multi-objective Resource Leveling Problem," SN Operations Research Forum, Springer, vol. 6(1), pages 1-22, March.
  • Handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-025-00415-2
    DOI: 10.1007/s43069-025-00415-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43069-025-00415-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43069-025-00415-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
    2. A. Alan B. Pritsker & Lawrence J. Waiters & Philip M. Wolfe, 1969. "Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach," Management Science, INFORMS, vol. 16(1), pages 93-108, September.
    3. Neumann, K. & Zimmermann, J., 1999. "Resource levelling for projects with schedule-dependent time windows," European Journal of Operational Research, Elsevier, vol. 117(3), pages 591-605, September.
    4. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    5. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    6. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    7. Hansen, Pierre & Mladenovic, Nenad, 2001. "Variable neighborhood search: Principles and applications," European Journal of Operational Research, Elsevier, vol. 130(3), pages 449-467, May.
    8. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    9. Kolisch, Rainer & Schwindt, Christoph & Sprecher, Arno, 1999. "Benchmark instances for project scheduling problems," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9500, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Atan, Tankut & Eren, Elif, 2018. "Optimal project duration for resource leveling," European Journal of Operational Research, Elsevier, vol. 266(2), pages 508-520.
    11. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
    12. Hongbo Li & Li Xiong & Yinbin Liu & Haitao Li, 2018. "An effective genetic algorithm for the resource levelling problem with generalised precedence relations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(5), pages 2054-2075, March.
    13. Konstantinos Anagnostopoulos & Georgios Koulinas, 2010. "A simulated annealing hyperheuristic for construction resource levelling," Construction Management and Economics, Taylor & Francis Journals, vol. 28(2), pages 163-175.
    14. M Ranjbar, 2013. "A path-relinking metaheuristic for the resource levelling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(7), pages 1071-1078, July.
    15. James C. Bean, 1994. "Genetic Algorithms and Random Keys for Sequencing and Optimization," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 154-160, May.
    16. Pellerin, Robert & Perrier, Nathalie & Berthaut, François, 2020. "A survey of hybrid metaheuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 280(2), pages 395-416.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hartmann, Sönke & Briskorn, Dirk, 2022. "An updated survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 297(1), pages 1-14.
    2. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    3. André Schnabel & Carolin Kellenbrink & Stefan Helber, 2018. "Profit-oriented scheduling of resource-constrained projects with flexible capacity constraints," Business Research, Springer;German Academic Association for Business Research, vol. 11(2), pages 329-356, September.
    4. Gómez Sánchez, Mariam & Lalla-Ruiz, Eduardo & Fernández Gil, Alejandro & Castro, Carlos & Voß, Stefan, 2023. "Resource-constrained multi-project scheduling problem: A survey," European Journal of Operational Research, Elsevier, vol. 309(3), pages 958-976.
    5. Pascale Bendotti & Luca Brunod Indrigo & Philippe Chrétienne & Bruno Escoffier, 2024. "Resource leveling: complexity of a unit execution time two-processor scheduling variant and related problems," Journal of Scheduling, Springer, vol. 27(6), pages 587-606, December.
    6. Vanhoucke, Mario & Coelho, José, 2024. "A matheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 319(3), pages 711-725.
    7. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.
    8. Xabier A. Martin & Rosa Herrero & Angel A. Juan & Javier Panadero, 2024. "An Agile Adaptive Biased-Randomized Discrete-Event Heuristic for the Resource-Constrained Project Scheduling Problem," Mathematics, MDPI, vol. 12(12), pages 1-21, June.
    9. Luise-Sophie Hoffmann & Carolin Kellenbrink & Stefan Helber, 2020. "Simultaneous structuring and scheduling of multiple projects with flexible project structures," Journal of Business Economics, Springer, vol. 90(5), pages 679-711, June.
    10. Lena Sophie Wohlert & Jürgen Zimmermann, 2024. "Resource overload problems with tardiness penalty: structural properties and solution approaches," Annals of Operations Research, Springer, vol. 338(1), pages 151-172, July.
    11. Osman Hürol Türkakın & David Arditi & Ekrem Manisalı, 2021. "Comparison of Heuristic Priority Rules in the Solution of the Resource-Constrained Project Scheduling Problem," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    12. Park, Jongyoon & Han, Jinil & Lee, Kyungsik, 2022. "Integer Optimization Model and Algorithm for the Stem Cell Culturing Problem," Omega, Elsevier, vol. 108(C).
    13. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    14. Schirmer, Andreas & Riesenberg, Sven, 1997. "Parameterized heuristics for project scheduling: Biased random sampling methods," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 456, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    15. Alireza Etminaniesfahani & Hanyu Gu & Leila Moslemi Naeni & Amir Salehipour, 2024. "An efficient relax-and-solve method for the multi-mode resource constrained project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 41-68, July.
    16. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    17. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    18. Naber, Anulark & Kolisch, Rainer, 2014. "MIP models for resource-constrained project scheduling with flexible resource profiles," European Journal of Operational Research, Elsevier, vol. 239(2), pages 335-348.
    19. Hongbo Li & Linwen Zheng & Hanyu Zhu, 2023. "Resource leveling in projects with flexible structures," Annals of Operations Research, Springer, vol. 321(1), pages 311-342, February.
    20. Kreter, Stefan & Schutt, Andreas & Stuckey, Peter J. & Zimmermann, Jürgen, 2018. "Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 472-486.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:1:d:10.1007_s43069-025-00415-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.