IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i1d10.1007_s11009-020-09816-8.html
   My bibliography  Save this article

Hierarchical Archimedean Dependence in Common Shock Models

Author

Listed:
  • Umberto Cherubini

    (University of Bologna)

  • Sabrina Mulinacci

    (University of Bologna)

Abstract

In this paper we show how to extend a simple common shock model with Archimedean dependence of the hidden variables to the non-exchangeable case. The assumption is that the hidden risk factors are linked by a hierarchical Archimedean dependence structure, possibly fully nested. We give directions about how to implement the model and to address the issue that the hidden variables must be put in descending dependence order. We show how the model can be simplified in the Gumbel-Marshall-Olkin distribution in Cherubini and Mulinacci (2017), the only case in which exponential distribution of the observed variables is preserved.

Suggested Citation

  • Umberto Cherubini & Sabrina Mulinacci, 2021. "Hierarchical Archimedean Dependence in Common Shock Models," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 143-163, March.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09816-8
    DOI: 10.1007/s11009-020-09816-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09816-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09816-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Scarsini & Pietro Muliere, 1987. "Characterization of a Marshall-Olkin type class of distributions," Post-Print hal-00542248, HAL.
    2. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.
    3. Fabrizio Durante & Marius Hofert & Matthias Scherer, 2010. "Multivariate Hierarchical Copulas with Shocks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 681-694, December.
    4. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    5. Cornelia Savu & Mark Trede, 2010. "Hierarchies of Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 10(3), pages 295-304.
    6. Li, Xiaohu & Pellerey, Franco, 2011. "Generalized Marshall-Olkin distributions and related bivariate aging properties," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1399-1409, November.
    7. German Bernhart & Marcos Escobar Anel & Jan-Frederik Mai & Matthias Scherer, 2013. "Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 179-203, February.
    8. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    9. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Mulinacci, 2018. "Archimedean-based Marshall-Olkin Distributions and Related Dependence Structures," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 205-236, March.
    2. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    3. Sabrina Mulinacci, 2015. "Archimedean-based Marshall-Olkin Distributions and Related Copula Functions," Papers 1502.01912, arXiv.org.
    4. Umberto Cherubini & Sabrina Mulinacci, 2015. "Systemic Risk with Exchangeable Contagion: Application to the European Banking System," Papers 1502.01918, arXiv.org.
    5. Matthias Scherer & Henrik Sloot, 2019. "Exogenous shock models: analytical characterization and probabilistic construction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(8), pages 931-959, November.
    6. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    7. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    8. Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
    9. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    10. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    11. Sloot Henrik, 2020. "The deFinetti representation of generalised Marshall–Olkin sequences," Dependence Modeling, De Gruyter, vol. 8(1), pages 107-118, January.
    12. Gobbi, Fabio & Kolev, Nikolai & Mulinacci, Sabrina, 2021. "Ryu-type extended Marshall-Olkin model with implicit shocks and joint life insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 342-358.
    13. Jianhua Lin & Xiaohu Li, 2014. "Multivariate Generalized Marshall–Olkin Distributions and Copulas," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 53-78, March.
    14. Li, Yang & Sun, Jianguo & Song, Shuguang, 2012. "Statistical analysis of bivariate failure time data with Marshall–Olkin Weibull models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2041-2050.
    15. German Bernhart & Marcos Escobar Anel & Jan-Frederik Mai & Matthias Scherer, 2013. "Default models based on scale mixtures of Marshall-Olkin copulas: properties and applications," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 179-203, February.
    16. Okhrin, Ostap & Ristig, Alexander, 2014. "Hierarchical Archimedean Copulae: The HAC Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i04).
    17. Ansari Jonathan & Rockel Marcus, 2024. "Dependence properties of bivariate copula families," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    18. Elena Di Bernardino & Didier Rullière, 2016. "A note on upper-patched generators for Archimedean copulas," Working Papers hal-01347869, HAL.
    19. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    20. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:1:d:10.1007_s11009-020-09816-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.