IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v82y2015icp19-34.html
   My bibliography  Save this article

Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution

Author

Listed:
  • Feizjavadian, S.H.
  • Hashemi, R.

Abstract

The lifetime of subjects in reliability and survival analysis in the presence of several causes of failure (i.e., competing risks) has attracted attention in the literature. Most studies have simplified the computations by assuming that the causes are independent, though this does not hold. Dependent competing risks under progressively hybrid censoring condition using a Marshall–Olkin bivariate Weibull distribution is investigated. Maximum likelihood and approximated maximum likelihood estimators are developed for estimating the unknown parameters. Asymptotic distributions of the maximum likelihood estimators are used to construct approximate confidence intervals using the observed Fisher information matrix. Based on a simulation and real applications, it is illustrated that when a parametric distributional assumption is nearly true, a close approximation could be achieved by deliberately censoring the number of subjects and the study duration using Type-II progressively hybrid censoring, which might help to save time and money in research studies.

Suggested Citation

  • Feizjavadian, S.H. & Hashemi, R., 2015. "Analysis of dependent competing risks in the presence of progressive hybrid censoring using Marshall–Olkin bivariate Weibull distribution," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 19-34.
  • Handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:19-34
    DOI: 10.1016/j.csda.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314002345
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Joarder, Avijit, 2006. "Analysis of Type-II progressively hybrid censored data," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2509-2528, June.
    2. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    3. G. Heinrich & U. Jensen, 1995. "Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extensions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 42(1), pages 49-65, December.
    4. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    5. Pareek, Bhuvanesh & Kundu, Debasis & Kumar, Sumit, 2009. "On progressively censored competing risks data for Weibull distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4083-4094, October.
    6. A. Childs & B. Chandrasekar & N. Balakrishnan & D. Kundu, 2003. "Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 319-330, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yanqing & Li, Mei & Gilbert, Peter B., 2016. "Goodness-of-fit test of the stratified mark-specific proportional hazards model with continuous mark," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 348-358.
    2. Wang, Liang & Tripathi, Yogesh Mani & Dey, Sanku & Zhang, Chunfang & Wu, Ke, 2022. "Analysis of dependent left-truncated and right-censored competing risks data with partially observed failure causes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 285-307.
    3. Debasis Kundu, 2022. "Bivariate Semi-parametric Singular Family of Distributions and its Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 846-872, November.
    4. Ke Wu & Liang Wang & Li Yan & Yuhlong Lio, 2021. "Statistical Inference of Left Truncated and Right Censored Data from Marshall–Olkin Bivariate Rayleigh Distribution," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    5. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    6. Prakash Chandra & Arvind Kumar Alok & Yogesh Mani Tripathi & Liang Wang, 2024. "Inference for A Generalized Family of Distributions Under Partially Observed Left Truncated and Right Censored Competing Risks Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 809-844, November.
    7. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.
    8. Ying Zhou & Liang Wang & Tzong-Ru Tsai & Yogesh Mani Tripathi, 2023. "Estimation of Dependent Competing Risks Model with Baseline Proportional Hazards Models under Minimum Ranked Set Sampling," Mathematics, MDPI, vol. 11(6), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Subhankar Dutta & Suchandan Kayal, 2023. "Inference of a competing risks model with partially observed failure causes under improved adaptive type-II progressive censoring," Journal of Risk and Reliability, , vol. 237(4), pages 765-780, August.
    2. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    3. Ping Chan & Hon Ng & Feng Su, 2015. "Exact likelihood inference for the two-parameter exponential distribution under Type-II progressively hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 747-770, August.
    4. Hassan Okasha & Yuhlong Lio & Mohammed Albassam, 2021. "On Reliability Estimation of Lomax Distribution under Adaptive Type-I Progressive Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(22), pages 1-38, November.
    5. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    6. Arnab Koley & Debasis Kundu, 2017. "On generalized progressive hybrid censoring in presence of competing risks," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(4), pages 401-426, May.
    7. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    8. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    9. Park, Sangun & Balakrishnan, N. & Zheng, Gang, 2008. "Fisher information in hybrid censored data," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2781-2786, November.
    10. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    11. Tian, Yuzhu & Zhu, Qianqian & Tian, Maozai, 2015. "Estimation for mixed exponential distributions under type-II progressively hybrid censored samples," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 85-96.
    12. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    13. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    14. Julian Górny & Erhard Cramer, 2018. "Modularization of hybrid censoring schemes and its application to unified progressive hybrid censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(2), pages 173-210, February.
    15. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    16. Abhimanyu Singh Yadav & Emrah Altun & Haitham M. Yousof, 2021. "Burr–Hatke Exponential Distribution: A Decreasing Failure Rate Model, Statistical Inference and Applications," Annals of Data Science, Springer, vol. 8(2), pages 241-260, June.
    17. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    18. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    19. Xiaojun Zhu & N. Balakrishnan & Helton Saulo, 2019. "On the existence and uniqueness of the maximum likelihood estimates of parameters of Laplace Birnbaum–Saunders distribution based on Type-I, Type-II and hybrid censored samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(7), pages 759-778, October.
    20. Tzong-Ru Tsai & Yuhlong Lio & Wei-Chen Ting, 2021. "EM Algorithm for Mixture Distributions Model with Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 9(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:82:y:2015:i:c:p:19-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.