IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i17p3122-d902777.html
   My bibliography  Save this article

Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling

Author

Listed:
  • Manal M. Yousef

    (Department of Mathematics, Faculty of Science, New Valley University, EL-Khargah 72511, Egypt
    These authors contributed equally to this work.)

  • Amal S. Hassan

    (Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
    These authors contributed equally to this work.)

  • Abdullah H. Al-Nefaie

    (Quantitative Methods Department, School of Business, King Faisal University, Al Ahsa 31982, Saudi Arabia
    These authors contributed equally to this work.)

  • Ehab M. Almetwally

    (Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613, Egypt
    Faculty of Business Administration, Delta University of Science and Technology, Gamasa 11152, Egypt
    The Scientific Association for Studies and Applied Research, Al Manzalah 35646, Egypt
    These authors contributed equally to this work.)

  • Hisham M. Almongy

    (Department of Applied Statistics and Insurance, Faculty of Commerce, Mansoura University, Mansoura 35516, Egypt
    These authors contributed equally to this work.)

Abstract

The current work focuses on ranked set sampling and a simple random sample as sampling approaches for determining stress–strength reliability from the inverted Topp–Leone distribution. Asymptotic confidence intervals are established, along with a maximum likelihood estimator of the parameters and stress–strength reliability. The reliability of such a system is assessed using the Bayesian approach under symmetric and asymmetric loss functions. The highest posterior density credible interval is constructed successively. The results are extracted using Monte Carlo simulation to compare the proposed estimators performance with different sample sizes. Finally, by looking at waiting time data and failure times of insulating fluid, the usefulness of the suggested technique is demonstrated.

Suggested Citation

  • Manal M. Yousef & Amal S. Hassan & Abdullah H. Al-Nefaie & Ehab M. Almetwally & Hisham M. Almongy, 2022. "Bayesian Estimation Using MCMC Method of System Reliability for Inverted Topp–Leone Distribution Based on Ranked Set Sampling," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3122-:d:902777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/17/3122/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/17/3122/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. E. Ghitany & D. K. Al-Mutairi, 2008. "Size-biased Poisson-Lindley distribution and its application," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 299-311.
    2. Jessie Marie Byrnes & Yu-Jau Lin & Tzong-Ru Tsai & Yuhlong Lio, 2019. "Bayesian Inference of δ = P ( X < Y ) for Burr Type XII Distribution Based on Progressively First Failure-Censored Samples," Mathematics, MDPI, vol. 7(9), pages 1-24, September.
    3. Amer Ibrahim Al-Omari & Amal S. Hassan & Naif Alotaibi & Mansour Shrahili & Heba F. Nagy, 2021. "Reliability Estimation of Inverse Lomax Distribution Using Extreme Ranked Set Sampling," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-12, December.
    4. McIntyre, G.A., 2005. "A Method for Unbiased Selective Sampling, Using Ranked Sets," The American Statistician, American Statistical Association, vol. 59, pages 230-232, August.
    5. Al-Saleh, M. Fraiwan & Al-Kadiri, M. Ali, 2000. "Double-ranked set sampling," Statistics & Probability Letters, Elsevier, vol. 48(2), pages 205-212, June.
    6. Ibrahim Elbatal & Naif Alotaibi & Salem A. Alyami & Mohammed Elgarhy & Ahmed R. El-Saeed, 2022. "Bayesian and Non-Bayesian Estimation of the Nadaraj ah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    7. Ghitany, M.E. & Atieh, B. & Nadarajah, S., 2008. "Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(4), pages 493-506.
    8. Mohamed Aboraya & Haitham M. Yousof & G.G. Hamedani & Mohamed Ibrahim, 2020. "A New Family of Discrete Distributions with Mathematical Properties, Characterizations, Bayesian and Non-Bayesian Estimation Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, September.
    9. Ehsan Zamanzade, 2019. "EDF-based tests of exponentiality in pair ranked set sampling," Statistical Papers, Springer, vol. 60(6), pages 2141-2159, December.
    10. Amal S. Hassan & Rasha S. Elshaarawy & Ronald Onyango & Heba F. Nagy & Nawab Hussain, 2022. "Estimating System Reliability Using Neoteric and Median RSS Data for Generalized Exponential Distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2022, pages 1-17, March.
    11. Liang Wang & Xuanjia Zuo & Yogesh Mani Tripathi & Junyuan Wang, 2020. "Reliability analysis for stress-strength model from a general family of truncated distributions under censored data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(15), pages 3589-3608, August.
    12. Cesar Augusto Taconeli & Wagner Hugo Bonat, 2020. "On the performance of estimation methods under ranked set sampling," Computational Statistics, Springer, vol. 35(4), pages 1805-1826, December.
    13. Ghitany, M.E. & Al-Mutairi, D.K. & Nadarajah, S., 2008. "Zero-truncated Poisson–Lindley distribution and its application," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 279-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    2. Heba F. Nagy & Amer Ibrahim Al-Omari & Amal S. Hassan & Ghadah A. Alomani, 2022. "Improved Estimation of the Inverted Kumaraswamy Distribution Parameters Based on Ranked Set Sampling with an Application to Real Data," Mathematics, MDPI, vol. 10(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amer Ibrahim Al-Omari & SidAhmed Benchiha & Ibrahim M. Almanjahie, 2022. "Efficient Estimation of Two-Parameter Xgamma Distribution Parameters Using Ranked Set Sampling Design," Mathematics, MDPI, vol. 10(17), pages 1-18, September.
    2. Hurairah Ahmed & Alabid Abdelhakim, 2020. "Beta transmuted Lomax distribution with applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 13-34, June.
    3. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Yi-Jia Huang, 2022. "A New Process Performance Index for the Weibull Distribution with a Type-I Hybrid Censoring Scheme," Mathematics, MDPI, vol. 10(21), pages 1-17, November.
    4. Cha, Ji Hwan, 2019. "Poisson Lindley process and its main properties," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 74-81.
    5. Irshad M. R. & Maya R., 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.
    6. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    7. Yaoting Yang & Weizhong Tian & Tingting Tong, 2021. "Generalized Mixtures of Exponential Distribution and Associated Inference," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    8. Mehdi Jabbari Nooghabi, 2021. "Comparing estimation of the parameters of distribution of the root density of plants in the presence of outliers," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    9. Amal S. Hassan & Said G. Nassr, 2019. "Power Lindley-G Family of Distributions," Annals of Data Science, Springer, vol. 6(2), pages 189-210, June.
    10. Ahlam H. Tolba & Chrisogonus K. Onyekwere & Ahmed R. El-Saeed & Najwan Alsadat & Hanan Alohali & Okechukwu J. Obulezi, 2023. "A New Distribution for Modeling Data with Increasing Hazard Rate: A Case of COVID-19 Pandemic and Vinyl Chloride Data," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    11. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    12. Jiaxin Nie & Wenhao Gui, 2019. "Parameter Estimation of Lindley Distribution Based on Progressive Type-II Censored Competing Risks Data with Binomial Removals," Mathematics, MDPI, vol. 7(7), pages 1-15, July.
    13. Amal S. Hassan & Ibrahim M. Almanjahie & Amer Ibrahim Al-Omari & Loai Alzoubi & Heba Fathy Nagy, 2023. "Stress–Strength Modeling Using Median-Ranked Set Sampling: Estimation, Simulation, and Application," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    14. Patawa, Rohit & Pundir, Pramendra Singh, 2023. "Inferential study of single unit repairable system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 503-516.
    15. Deepesh Bhati & Mohd. Malik & H. Vaman, 2015. "Lindley–Exponential distribution: properties and applications," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 335-357, December.
    16. Singh, Bhupendra & Gupta, Puneet Kumar, 2012. "Load-sharing system model and its application to the real data set," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(9), pages 1615-1629.
    17. Festus C. Opone & Nosakhare Ekhosuehi & Sunday E. Omosigho, 2022. "Topp-Leone Power Lindley Distribution(Tlpld): its Properties and Application," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 597-608, August.
    18. A. Asgharzadeh & A. Fallah & M. Z. Raqab & R. Valiollahi, 2018. "Statistical inference based on Lindley record data," Statistical Papers, Springer, vol. 59(2), pages 759-779, June.
    19. Marius Giuclea & Costin-Ciprian Popescu, 2022. "On Geometric Mean and Cumulative Residual Entropy for Two Random Variables with Lindley Type Distribution," Mathematics, MDPI, vol. 10(9), pages 1-10, April.
    20. M. R. Irshad & R. Maya, 2018. "On A Less Cumbersome Method Of Estimation Of Parameters Of Lindley Distribution By Order Statistics," Statistics in Transition New Series, Polish Statistical Association, vol. 19(4), pages 597-620, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:17:p:3122-:d:902777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.