IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i4d10.1007_s13198-016-0548-6.html
   My bibliography  Save this article

Estimation of the Frank copula model for dependent competing risks in accelerated life testing

Author

Listed:
  • Herbert Hove

    (University of the Witwatersrand)

  • Frank Beichelt

    (University of the Witwatersrand)

  • Parmod K. Kapur

    (Amity University)

Abstract

A competing risks situation where a potential critical unit failure at random time $$X_2$$ X 2 in a life test may be avoided by observing a degraded failure at some random time $$X_1$$ X 1 is considered. It is thus logical to expect a dependence between the event times $$X_1$$ X 1 and $$X_2$$ X 2 . We model the joint distribution of $$X_1$$ X 1 and $$X_2$$ X 2 by the Frank copula because it captures the full range of dependence and it is symmetric in its dependence structure. This paper shows how expert opinion is used to estimate the assumed Frank copula when only incomplete competing risks data are observed. Estimation of the copula allows the marginal distributions to be identified from competing risks data. Our result is thus apparent in reliability where primary interest is in the estimation of marginal failure distributions and can be extended to other applications.

Suggested Citation

  • Herbert Hove & Frank Beichelt & Parmod K. Kapur, 2017. "Estimation of the Frank copula model for dependent competing risks in accelerated life testing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 673-682, December.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-016-0548-6
    DOI: 10.1007/s13198-016-0548-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0548-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0548-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
    2. Dimitrova, Dimitrina S. & Haberman, Steven & Kaishev, Vladimir K., 2013. "Dependent competing risks: Cause elimination and its impact on survival," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 464-477.
    3. Jacobo Uña-Álvarez & Noël Veraverbeke, 2013. "Generalized copula-graphic estimator," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 343-360, June.
    4. Basu, A. P. & Ghosh, J. K., 1978. "Identifiability of the multinormal and other distributions under competing risks model," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 413-429, September.
    5. Simon M. S. Lo & Ralf A. Wilke, 2010. "A copula model for dependent competing risks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 359-376, March.
    6. Xu, Ancha & Tang, Yincai, 2011. "Objective Bayesian analysis of accelerated competing failure models under Type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2830-2839, October.
    7. Bo Lindqvist & Guro Skogsrud, 2009. "Modeling of dependent competing risks by first passage times of Wiener processes," IISE Transactions, Taylor & Francis Journals, vol. 41(1), pages 72-80.
    8. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    9. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    10. Han, Donghoon & Balakrishnan, N., 2010. "Inference for a simple step-stress model with competing risks for failure from the exponential distribution under time constraint," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2066-2081, September.
    11. Kaishev, Vladimir K. & Dimitrova, Dimitrina S. & Haberman, Steven, 2007. "Modelling the joint distribution of competing risks survival times using copula functions," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 339-361, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yicheng Zhou & Zhenzhou Lu & Yan Shi & Kai Cheng, 2019. "The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes," Journal of Risk and Reliability, , vol. 233(3), pages 401-418, June.
    2. R. Dhanya Nair & E. I. Abdul Sathar, 2024. "Nonparametric estimation of extropy based measures under right censoring," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2374-2382, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo, Simon M.S. & Wilke, Ralf A. & Emura, Takeshi, 2024. "A semiparametric model for the cause-specific hazard under risk proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    2. Jia-Han Shih & Takeshi Emura, 2018. "Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula," Computational Statistics, Springer, vol. 33(3), pages 1293-1323, September.
    3. Yicheng Zhou & Zhenzhou Lu & Yan Shi & Kai Cheng, 2019. "The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes," Journal of Risk and Reliability, , vol. 233(3), pages 401-418, June.
    4. Dimitrova, Dimitrina S. & Haberman, Steven & Kaishev, Vladimir K., 2013. "Dependent competing risks: Cause elimination and its impact on survival," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 464-477.
    5. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.
    6. Jia-Han Shih & Takeshi Emura, 2019. "Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula," Statistical Papers, Springer, vol. 60(4), pages 1101-1118, August.
    7. Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
    9. Kim, Dongwoo, 2023. "Partially identifying competing risks models: An application to the war on cancer," Journal of Econometrics, Elsevier, vol. 234(2), pages 536-564.
    10. Emura, Takeshi & Hsu, Jiun-Huang, 2020. "Estimation of the Mann–Whitney effect in the two-sample problem under dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    11. Lo Simon M.S. & Wilke Ralf A., 2014. "A Regression Model for the Copula-Graphic Estimator," Journal of Econometric Methods, De Gruyter, vol. 3(1), pages 21-46, January.
    12. Schwarz, Maik & Jongbloed, Geurt & Van Keilegom, Ingrid, 2012. "On the identifiability of copulas in bivariate competing risks models," LIDAM Discussion Papers ISBA 2012032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Liu, Yi & Wang, Qihua, 2015. "Copula-graphic estimators for the marginal survival function with censoring indicators missing at random," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 101-110.
    14. Simon M.S. Lo & Ralf A. Wilke, 2011. "Identifiability and estimation of the sign of a covariate effect in the competing risks model," Discussion Papers 11/03, University of Nottingham, School of Economics.
    15. Sujica, Aleksandar & Van Keilegom, Ingrid, 2013. "Estimation of location and scale functionals in nonparametric regression under copula dependent censoring," LIDAM Discussion Papers ISBA 2013024, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
    17. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    18. T. Emura & K. Murotani, 2015. "An algorithm for estimating survival under a copula-based dependent truncation model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 734-751, December.
    19. Lo, Simon M.S. & Stephan, Gesine & Wilke, Ralf, 2012. "Estimating the Latent Effect of Unemployment Benefits on Unemployment Duration," IZA Discussion Papers 6650, Institute of Labor Economics (IZA).
    20. Emura, Takeshi & Chen, Yi-Hau, 2014. "Gene selection for survival data under dependent censoring: a copula-based approach," MPRA Paper 58043, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-016-0548-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.