IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p610-d751227.html
   My bibliography  Save this article

PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data

Author

Listed:
  • Xue-Bo Jin

    (Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China
    China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China)

  • Wen-Tao Gong

    (Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China
    China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China)

  • Jian-Lei Kong

    (Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China
    China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China)

  • Yu-Ting Bai

    (Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China
    China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China)

  • Ting-Li Su

    (Artificial Intelligence College, Beijing Technology and Business University, Beijing 100048, China
    China Light Industry Key Laboratory of Industrial Internet and Big Data, Beijing Technology and Business University, Beijing 100048, China)

Abstract

Prediction based on time series has a wide range of applications. Due to the complex nonlinear and random distribution of time series data, the performance of learning prediction models can be reduced by the modeling bias or overfitting. This paper proposes a novel planar flow-based variational auto-encoder prediction model (PFVAE), which uses the long- and short-term memory network (LSTM) as the auto-encoder and designs the variational auto-encoder (VAE) as a time series data predictor to overcome the noise effects. In addition, the internal structure of VAE is transformed using planar flow, which enables it to learn and fit the nonlinearity of time series data and improve the dynamic adaptability of the network. The prediction experiments verify that the proposed model is superior to other models regarding prediction accuracy and proves it is effective for predicting time series data.

Suggested Citation

  • Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:610-:d:751227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/610/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/610/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Min Zuo & Qing-Chuan Zhang & Seng Lin, 2021. "Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse," Agriculture, MDPI, vol. 11(8), pages 1-25, August.
    2. Xiao Zhang & Feng Ding, 2020. "Hierarchical parameter and state estimation for bilinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(2), pages 275-290, January.
    3. Taewoon Kong & Dongguen Choi & Geonseok Lee & Kichun Lee, 2021. "Air Pollution Prediction Using an Ensemble of Dynamic Transfer Models for Multivariate Time Series," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    4. Thanongsak Xayasouk & HwaMin Lee & Giyeol Lee, 2020. "Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    5. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    6. Ling Xu & Feng Ding & Quanmin Zhu, 2021. "Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(9), pages 1806-1821, July.
    7. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
    8. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    9. Xue-Bo Jin & Xing-Hong Yu & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    10. Xue-Bo Jin & Nian-Xiang Yang & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
    2. Tao Zhen & Lei Yan & Jian-lei Kong, 2020. "An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    3. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Ce Zhang & Xiangxiang Meng & Yan Ji, 2023. "Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(13), pages 1-22, June.
    5. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    6. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    7. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    8. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    9. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    10. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    11. Hossein Jalali & Farshid Keynia & Faezeh Amirteimoury & Azim Heydari, 2024. "A Short-Term Air Pollutant Concentration Forecasting Method Based on a Hybrid Neural Network and Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
    12. Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    13. Negri, Simone & Giani, Federico & Blasuttigh, Nicola & Massi Pavan, Alessandro & Mellit, Adel & Tironi, Enrico, 2022. "Combined model predictive control and ANN-based forecasters for jointly acting renewable self-consumers: An environmental and economical evaluation," Renewable Energy, Elsevier, vol. 198(C), pages 440-454.
    14. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    15. Li, Xuan & Zhang, Wei, 2022. "Physics-informed deep learning model in wind turbine response prediction," Renewable Energy, Elsevier, vol. 185(C), pages 932-944.
    16. Junbeom Park & Seongju Chang, 2021. "A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
    17. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    18. Belqasem Aljafari & Siva Rama Krishna Madeti & Priya Ranjan Satpathy & Sudhakar Babu Thanikanti & Bamidele Victor Ayodele, 2022. "Automatic Monitoring System for Online Module-Level Fault Detection in Grid-Tied Photovoltaic Plants," Energies, MDPI, vol. 15(20), pages 1-28, October.
    19. Mirza, Adeel Feroz & Mansoor, Majad & Usman, Muhammad & Ling, Qiang, 2023. "A comprehensive approach for PV wind forecasting by using a hyperparameter tuned GCVCNN-MRNN deep learning model," Energy, Elsevier, vol. 283(C).
    20. Mei-Hsin Chen & Yao-Chung Chen & Tien-Yin Chou & Fang-Shii Ning, 2023. "PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework," IJERPH, MDPI, vol. 20(5), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:610-:d:751227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.