A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
- Bouteska, Ahmed & Hajek, Petr & Fisher, Ben & Abedin, Mohammad Zoynul, 2023. "Nonlinearity in forecasting energy commodity prices: Evidence from a focused time-delayed neural network," Research in International Business and Finance, Elsevier, vol. 64(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafal Weron, 2021. "Erratum to 'Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark' [Appl. Energy 293 (2021) 116983]," WORking papers in Management Science (WORMS) WORMS/21/12, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Applied Energy, Elsevier, vol. 293(C).
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Papers 2008.08004, arXiv.org, revised Dec 2020.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
- Küfeoğlu, S. & Liu, G. & Anaya, K. & Pollitt, M., 2019.
"Digitalisation and New Business Models in Energy Sector,"
Cambridge Working Papers in Economics
1956, Faculty of Economics, University of Cambridge.
- Sinan Küfeoglu & Gaomin Liu & Karim Amaya & Michael G. Pollitt, 2019. "Digitalisation and New Business Models in Energy Sector," Working Papers EPRG1920, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Teece, David J., 2018. "Profiting from innovation in the digital economy: Enabling technologies, standards, and licensing models in the wireless world," Research Policy, Elsevier, vol. 47(8), pages 1367-1387.
- Libai, Barak & Bart, Yakov & Gensler, Sonja & Hofacker, Charles F. & Kaplan, Andreas & Kötterheinrich, Kim & Kroll, Eike Benjamin, 2020. "Brave New World? On AI and the Management of Customer Relationships," Journal of Interactive Marketing, Elsevier, vol. 51(C), pages 44-56.
- Di Silvestre, Maria Luisa & Favuzza, Salvatore & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2018. "How Decarbonization, Digitalization and Decentralization are changing key power infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 483-498.
- Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
- Zhao, Yang & Li, Tingting & Zhang, Xuejun & Zhang, Chaobo, 2019. "Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 85-101.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
- Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Bonini, Matteo & Wen, John Z. & Nathwani, Jatin & Oliveti, Giuseppe, 2021. "Artificial intelligence application for the performance prediction of a clean energy community," Energy, Elsevier, vol. 232(C).
- Paul L. Joskow, 2008.
"Lessons Learned From Electricity Market Liberalization,"
The Energy Journal, , vol. 29(2_suppl), pages 9-42, December.
- Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Shin, Won & Han, Jeongyun & Rhee, Wonjong, 2021. "AI-assistance for predictive maintenance of renewable energy systems," Energy, Elsevier, vol. 221(C).
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Mourad Yessef & Badre Bossoufi & Mohammed Taoussi & Saad Motahhir & Ahmed Lagrioui & Hamid Chojaa & Sanghun Lee & Byeong-Gwon Kang & Mohamed Abouhawwash, 2022. "Improving the Maximum Power Extraction from Wind Turbines Using a Second-Generation CRONE Controller," Energies, MDPI, vol. 15(10), pages 1-23, May.
- Verhoef, Peter C. & Broekhuizen, Thijs & Bart, Yakov & Bhattacharya, Abhi & Qi Dong, John & Fabian, Nicolai & Haenlein, Michael, 2021. "Digital transformation: A multidisciplinary reflection and research agenda," Journal of Business Research, Elsevier, vol. 122(C), pages 889-901.
- Gerbaulet, C. & von Hirschhausen, C. & Kemfert, C. & Lorenz, C. & Oei, P.-Y., 2019.
"European electricity sector decarbonization under different levels of foresight,"
Renewable Energy, Elsevier, vol. 141(C), pages 973-987.
- Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
- Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
- Aziz, A.F.A. & Khalid, S.N. & Mustafa, M.W. & Shareef, H. & Aliyu, G., 2013. "Artificial Intelligent Meter development based on Advanced Metering Infrastructure technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 191-197.
- Saarikko, Ted & Westergren, Ulrika H. & Blomquist, Tomas, 2020. "Digital transformation: Five recommendations for the digitally conscious firm," Business Horizons, Elsevier, vol. 63(6), pages 825-839.
- Bompard, E. & Botterud, A. & Corgnati, S. & Huang, T. & Jafari, M. & Leone, P. & Mauro, S. & Montesano, G. & Papa, C. & Profumo, F., 2020. "An electricity triangle for energy transition: Application to Italy," Applied Energy, Elsevier, vol. 277(C).
- Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
- Van Gompel, Jonas & Spina, Domenico & Develder, Chris, 2023. "Cost-effective fault diagnosis of nearby photovoltaic systems using graph neural networks," Energy, Elsevier, vol. 266(C).
- Qin, Haosen & Yu, Zhen & Li, Tailu & Liu, Xueliang & Li, Li, 2023. "Energy-efficient heating control for nearly zero energy residential buildings with deep reinforcement learning," Energy, Elsevier, vol. 264(C).
- Zhang, Yagang & Zhao, Yunpeng & Shen, Xiaoyu & Zhang, Jinghui, 2022. "A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms," Applied Energy, Elsevier, vol. 305(C).
- Erik Möllerström & Sean Gregory & Aromal Sugathan, 2021. "Improvement of AEP Predictions with Time for Swedish Wind Farms," Energies, MDPI, vol. 14(12), pages 1-12, June.
- Balsmeier, Benjamin & Woerter, Martin, 2019. "Is this time different? How digitalization influences job creation and destruction," Research Policy, Elsevier, vol. 48(8), pages 1-1.
- Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
- Majidi Nezhad, M. & Heydari, A. & Pirshayan, E. & Groppi, D. & Astiaso Garcia, D., 2021. "A novel forecasting model for wind speed assessment using sentinel family satellites images and machine learning method," Renewable Energy, Elsevier, vol. 179(C), pages 2198-2211.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muhammad Jameel Labaran & Tariq Masood, 2023. "Industry 4.0 Driven Green Supply Chain Management in Renewable Energy Sector: A Critical Systematic Literature Review," Energies, MDPI, vol. 16(19), pages 1-25, October.
- Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Ghulam Moeen Uddin & Waqar Muhammad Ashraf & Karolina Grabowska & Anna Zylka & Anna Kulakowska & Wojciech Nowak, 2023. "Artificial Intelligence for Energy Processes and Systems: Applications and Perspectives," Energies, MDPI, vol. 16(8), pages 1-12, April.
- Piotr F. Borowski, 2024. "Innovative Solutions for the Future Development of the Energy Sector," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 297-307.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
- Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Joseph Nyangon & Ruth Akintunde, 2024. "Principal component analysis of day‐ahead electricity price forecasting in CAISO and its implications for highly integrated renewable energy markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(1), January.
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023.
"Distributional neural networks for electricity price forecasting,"
Energy Economics, Elsevier, vol. 125(C).
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022. "Distributional neural networks for electricity price forecasting," Papers 2207.02832, arXiv.org, revised Dec 2022.
- Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
- Danuso, Anna & Giones, Ferran & Ribeiro da Silva, Elias, 2022. "The digital transformation of industrial players," Business Horizons, Elsevier, vol. 65(3), pages 341-349.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.
- Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Jinqiu He & Huiwen Su, 2022. "Digital Transformation and Green Innovation of Chinese Firms: The Moderating Role of Regulatory Pressure and International Opportunities," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
- Cirillo, Valeria & Fanti, Lucrezia & Mina, Andrea & Ricci, Andrea, 2023. "The adoption of digital technologies: Investment, skills, work organisation," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 89-105.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Ancillai, Chiara & Sabatini, Andrea & Gatti, Marco & Perna, Andrea, 2023. "Digital technology and business model innovation: A systematic literature review and future research agenda," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
- Galarneau-Vincent, Rémi & Gauthier, Geneviève & Godin, Frédéric, 2023. "Foreseeing the worst: Forecasting electricity DART spikes," Energy Economics, Elsevier, vol. 119(C).
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
More about this item
Keywords
artificial intelligence; power sector; adoption rate; application; AI companies; AI start-ups;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1077-:d:1040228. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.