IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1596-d516332.html
   My bibliography  Save this article

Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization

Author

Listed:
  • Xue-Bo Jin

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
    National Key Laboratory of Environmental Protection Food Chain Pollution Prevention, Beijing 100048, China)

  • Wei-Zhen Zheng

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Jian-Lei Kong

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
    National Key Laboratory of Environmental Protection Food Chain Pollution Prevention, Beijing 100048, China)

  • Xiao-Yi Wang

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
    National Key Laboratory of Environmental Protection Food Chain Pollution Prevention, Beijing 100048, China)

  • Yu-Ting Bai

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Ting-Li Su

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Seng Lin

    (Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China)

Abstract

Short-term electrical load forecasting plays an important role in the safety, stability, and sustainability of the power production and scheduling process. An accurate prediction of power load can provide a reliable decision for power system management. To solve the limitation of the existing load forecasting methods in dealing with time-series data, causing the poor stability and non-ideal forecasting accuracy, this paper proposed an attention-based encoder-decoder network with Bayesian optimization to do the accurate short-term power load forecasting. Proposed model is based on an encoder-decoder architecture with a gated recurrent units (GRU) recurrent neural network with high robustness on time-series data modeling. The temporal attention layer focuses on the key features of input data that play a vital role in promoting the prediction accuracy for load forecasting. Finally, the Bayesian optimization method is used to confirm the model’s hyperparameters to achieve optimal predictions. The verification experiments of 24 h load forecasting with real power load data from American Electric Power (AEP) show that the proposed model outperforms other models in terms of prediction accuracy and algorithm stability, providing an effective approach for migrating time-serial power load prediction by deep-learning technology.

Suggested Citation

  • Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1596-:d:516332
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    3. Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
    4. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    5. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    6. Fumo, Nelson & Rafe Biswas, M.A., 2015. "Regression analysis for prediction of residential energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 332-343.
    7. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    8. Ali Dokht Shakibjoo & Mohammad Moradzadeh & Seyed Zeinolabedin Moussavi & Lieven Vandevelde, 2020. "A Novel Technique for Load Frequency Control of Multi-Area Power Systems," Energies, MDPI, vol. 13(9), pages 1-19, April.
    9. Hongze Li & Hongyu Liu & Hongyan Ji & Shiying Zhang & Pengfei Li, 2020. "Ultra-Short-Term Load Demand Forecast Model Framework Based on Deep Learning," Energies, MDPI, vol. 13(18), pages 1-16, September.
    10. Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
    11. Abbasimehr, Hossein & Paki, Reza, 2021. "Prediction of COVID-19 confirmed cases combining deep learning methods and Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Min Zuo & Qing-Chuan Zhang & Seng Lin, 2021. "Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse," Agriculture, MDPI, vol. 11(8), pages 1-25, August.
    2. Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
    3. Xin Xu & Cheng-Cai Yang & Yang Xiao & Jian-Lei Kong, 2023. "A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    4. Wellcome Peujio Jiotsop-Foze & Adrián Hernández-del-Valle & Francisco Venegas-Martínez, 2024. "Electrical Load Forecasting to Plan the Increase in Renewable Energy Sources and Electricity Demand: a CNN-QR-RTCF and Deep Learning Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 186-194, July.
    5. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    6. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    7. Xue-Bo Jin & Zhong-Yao Wang & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su & Hui-Jun Ma & Prasun Chakrabarti, 2023. "Variational Bayesian Network with Information Interpretability Filtering for Air Quality Forecasting," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    8. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    9. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    10. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    11. Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
    12. Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
    13. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    14. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    15. Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
    16. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    17. Zhou, Yihong & Zhang, Xiao & Ding, Feng, 2022. "Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    18. Thibaut Th'eate & Antonio Sutera & Damien Ernst, 2023. "Matching of Everyday Power Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual Analysis," Papers 2301.11587, arXiv.org.
    19. Xudong Pang & Xiangchen Lu & Hao Ding & Josep M. Guerrero, 2022. "Construction of Smart Grid Load Forecast Model by Edge Computing," Energies, MDPI, vol. 15(9), pages 1-16, April.
    20. Liang Ran & Yaling Mao & Tiejiang Yuan & Guofeng Li, 2022. "Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy," Energies, MDPI, vol. 15(22), pages 1-17, November.
    21. Rui Zhang & Yuwei Zhao & Jianlei Kong & Chen Cheng & Xinyan Liu & Chang Zhang, 2021. "Intelligent Recognition Method of Decorative Openwork Windows with Sustainable Application for Suzhou Traditional Private Gardens in China," Sustainability, MDPI, vol. 13(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Che & Sun, Bo & Zhang, Chenghui & Li, Fan, 2020. "A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine," Applied Energy, Elsevier, vol. 275(C).
    2. Seok-Jun Bu & Sung-Bae Cho, 2020. "Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption," Energies, MDPI, vol. 13(18), pages 1-16, September.
    3. Xin Gao & Xiaobing Li & Bing Zhao & Weijia Ji & Xiao Jing & Yang He, 2019. "Short-Term Electricity Load Forecasting Model Based on EMD-GRU with Feature Selection," Energies, MDPI, vol. 12(6), pages 1-18, March.
    4. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    5. Yuxin Zhang & Yifei Yang & Xiaosi Li & Zijing Yuan & Yuki Todo & Haichuan Yang, 2023. "A Dendritic Neuron Model Optimized by Meta-Heuristics with a Power-Law-Distributed Population Interaction Network for Financial Time-Series Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-20, March.
    6. Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
    7. Hossein Yousefi & Mohammad Hasan Ghodusinejad & Armin Ghodrati, 2022. "Multi-Criteria Future Energy System Planning and Analysis for Hot Arid Areas of Iran," Energies, MDPI, vol. 15(24), pages 1-25, December.
    8. Dyna Heng & Anna Ivanova & Rodrigo Mariscal & Ms. Uma Ramakrishnan & Joyce Wong, 2016. "Advancing Financial Development in Latin America and the Caribbean," IMF Working Papers 2016/081, International Monetary Fund.
    9. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin L., 2016. "The implications of monetary expansion in China for the US dollar," Journal of Asian Economics, Elsevier, vol. 46(C), pages 71-84.
    10. Kim, Yochan & Park, Jinkyun & Jung, Wondea, 2017. "A quantitative measure of fitness for duty and work processes for human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 595-601.
    11. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    12. Guo-hua Ye & Mirxat Alim & Peng Guan & De-sheng Huang & Bao-sen Zhou & Wei Wu, 2021. "Improving the precision of modeling the incidence of hemorrhagic fever with renal syndrome in mainland China with an ensemble machine learning approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-13, March.
    13. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    14. Karzan Mahdi Ghafour & Abdulqadir Rahomee Ahmed Aljanabi, 2023. "The role of forecasting in preventing supply chain disruptions during the COVID-19 pandemic: a distributor-retailer perspective," Operations Management Research, Springer, vol. 16(2), pages 780-793, June.
    15. Fieger, Peter & Rice, John, 2016. "Modelling Chinese Inbound Tourism Arrivals into Christchurch," MPRA Paper 75468, University Library of Munich, Germany.
    16. Koopman, Siem Jan & Ooms, Marius, 2006. "Forecasting daily time series using periodic unobserved components time series models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
    17. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    18. Albrecht, Tobias & Rausch, Theresa Maria & Derra, Nicholas Daniel, 2021. "Call me maybe: Methods and practical implementation of artificial intelligence in call center arrivals’ forecasting," Journal of Business Research, Elsevier, vol. 123(C), pages 267-278.
    19. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    20. Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1596-:d:516332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.