IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p500-d784866.html
   My bibliography  Save this article

A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition

Author

Listed:
  • Jianlei Kong

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China
    National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100048, China)

  • Hongxing Wang

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Chengcai Yang

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Xuebo Jin

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

  • Min Zuo

    (National Engineering Laboratory for Agri-Product Quality Traceability, Beijing 100048, China
    School of E-Commerce and Logistics, Beijing Technology and Business University, Beijing 100048, China)

  • Xin Zhang

    (School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China)

Abstract

With the development of advanced information and intelligence technologies, precision agriculture has become an effective solution to monitor and prevent crop pests and diseases. However, pest and disease recognition in precision agriculture applications is essentially the fine-grained image classification task, which aims to learn effective discriminative features that can identify the subtle differences among similar visual samples. It is still challenging to solve for existing standard models troubled by oversized parameters and low accuracy performance. Therefore, in this paper, we propose a feature-enhanced attention neural network (Fe-Net) to handle the fine-grained image recognition of crop pests and diseases in innovative agronomy practices. This model is established based on an improved CSP-stage backbone network, which offers massive channel-shuffled features in various dimensions and sizes. Then, a spatial feature-enhanced attention module is added to exploit the spatial interrelationship between different semantic regions. Finally, the proposed Fe-Net employs a higher-order pooling module to mine more highly representative features by computing the square root of the covariance matrix of elements. The whole architecture is efficiently trained in an end-to-end way without additional manipulation. With comparative experiments on the CropDP-181 Dataset, the proposed Fe-Net achieves Top-1 Accuracy up to 85.29% with an average recognition time of only 71 ms, outperforming other existing methods. More experimental evidence demonstrates that our approach obtains a balance between the model’s performance and parameters, which is suitable for its practical deployment in precision agriculture art applications.

Suggested Citation

  • Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:500-:d:784866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Min Zuo & Qing-Chuan Zhang & Seng Lin, 2021. "Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse," Agriculture, MDPI, vol. 11(8), pages 1-25, August.
    2. Ling Xu & Feng Ding & Quanmin Zhu, 2021. "Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(9), pages 1806-1821, July.
    3. Tao Zhen & Jian-lei Kong & Lei Yan, 2020. "Hybrid Deep-Learning Framework Based on Gaussian Fusion of Multiple Spatiotemporal Networks for Walking Gait Phase Recognition," Complexity, Hindawi, vol. 2020, pages 1-17, October.
    4. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
    5. Zhou, Yihong & Zhang, Xiao & Ding, Feng, 2022. "Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Xu & Cheng-Cai Yang & Yang Xiao & Jian-Lei Kong, 2023. "A Fine-Grained Recognition Neural Network with High-Order Feature Maps via Graph-Based Embedding for Natural Bird Diversity Conservation," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    2. Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    3. Junchi Zhou & Wenwu Hu & Airu Zou & Shike Zhai & Tianyu Liu & Wenhan Yang & Ping Jiang, 2022. "Lightweight Detection Algorithm of Kiwifruit Based on Improved YOLOX-S," Agriculture, MDPI, vol. 12(7), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    2. Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Min Zuo & Qing-Chuan Zhang & Seng Lin, 2021. "Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse," Agriculture, MDPI, vol. 11(8), pages 1-25, August.
    3. Jing, Shaoxue, 2023. "Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 288-300.
    4. Ce Zhang & Xiangxiang Meng & Yan Ji, 2023. "Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(13), pages 1-22, June.
    5. Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
    6. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    7. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    8. Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
    9. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
    10. Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
    11. Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
    12. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    13. Thibaut Th'eate & Antonio Sutera & Damien Ernst, 2023. "Matching of Everyday Power Supply and Demand with Dynamic Pricing: Problem Formalisation and Conceptual Analysis," Papers 2301.11587, arXiv.org.
    14. Xudong Pang & Xiangchen Lu & Hao Ding & Josep M. Guerrero, 2022. "Construction of Smart Grid Load Forecast Model by Edge Computing," Energies, MDPI, vol. 15(9), pages 1-16, April.
    15. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    16. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    17. Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
    18. Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
    19. Tang, Jia, 2023. "Fractional gradient descent algorithm for switching models using self-organizing maps: One set data or all the collected data," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    20. Wellcome Peujio Jiotsop-Foze & Adrián Hernández-del-Valle & Francisco Venegas-Martínez, 2024. "Electrical Load Forecasting to Plan the Increase in Renewable Energy Sources and Electricity Demand: a CNN-QR-RTCF and Deep Learning Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 14(4), pages 186-194, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:500-:d:784866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.