IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4829-d1409460.html
   My bibliography  Save this article

A Short-Term Air Pollutant Concentration Forecasting Method Based on a Hybrid Neural Network and Metaheuristic Optimization Algorithms

Author

Listed:
  • Hossein Jalali

    (Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran)

  • Farshid Keynia

    (Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran)

  • Faezeh Amirteimoury

    (Department of Computer Engineering and Information Technology, Islamic Azad University of Kerman, Kerman 7635131167, Iran)

  • Azim Heydari

    (Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
    Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, 00184 Rome, Italy)

Abstract

In the contemporary era, global air quality has been adversely affected by technological progress, urban development, population expansion, and the proliferation of industries and power plants. Recognizing the urgency of addressing air pollution consequences, the prediction of the concentration levels of air pollutants has become crucial. This study focuses on the short-term prediction of nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ), prominent air pollutants emitted by the Kerman Combined Cycle Power Plant, from May to September 2019. The proposed method utilizes a new two-step feature selection (FS) process, a hybrid neural network (HNN), and the Coot optimization algorithm (COOT). This combination of FS and COOT selects the most relevant input features while eliminating redundant ones, leading to improved prediction accuracy. The application of HNN for training further enhances the accuracy significantly. To assess the model’s performance, two datasets, including real data from two different parts of Combined Cycle Power Plant in Kerman, Iran, from 1 May 2019 to 30 September 2019 (namely dataset A and B), are utilized. Subsequently, mean square error (MSE), mean absolute error (MAE), root mean square deviation (RMSE), and mean absolute percentage error (MAPE) were employed to obtain the accuracy of FS-HNN-COOT. Experimental results showed MSE of FS-HNN-COOT for NO 2 ranged from 0.002 to 0.005, MAE from 0.016 to 0.0492, RMSE from 0.0142 to 0.0736, and MAEP from 4.21% to 8.69%. Also, MSE, MAE, RMSE, and MAPE ranged from 0.0001 to 0.0137, 0.0108 to 0.0908, 0.0137 to 0.1173, and 9.03% to 15.93%, respectively, for SO 2 .

Suggested Citation

  • Hossein Jalali & Farshid Keynia & Faezeh Amirteimoury & Azim Heydari, 2024. "A Short-Term Air Pollutant Concentration Forecasting Method Based on a Hybrid Neural Network and Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4829-:d:1409460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4829/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4829/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanongsak Xayasouk & HwaMin Lee & Giyeol Lee, 2020. "Air Pollution Prediction Using Long Short-Term Memory (LSTM) and Deep Autoencoder (DAE) Models," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih‐Hsuan Wang & Chia‐Rong Chang, 2023. "Forecasting air quality index considering socioeconomic indicators and meteorological factors: A data granularity perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1261-1274, August.
    2. Endah Kristiani & Hao Lin & Jwu-Rong Lin & Yen-Hsun Chuang & Chin-Yin Huang & Chao-Tung Yang, 2022. "Short-Term Prediction of PM 2.5 Using LSTM Deep Learning Methods," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    3. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    4. Eric Hitimana & Gaurav Bajpai & Richard Musabe & Louis Sibomana & Jayavel Kayalvizhi, 2021. "Implementation of IoT Framework with Data Analysis Using Deep Learning Methods for Occupancy Prediction in a Building," Future Internet, MDPI, vol. 13(3), pages 1-19, March.
    5. Paulo S. G. de Mattos Neto & Manoel H. N. Marinho & Hugo Siqueira & Yara de Souza Tadano & Vivian Machado & Thiago Antonini Alves & João Fausto L. de Oliveira & Francisco Madeiro, 2020. "A Methodology to Increase the Accuracy of Particulate Matter Predictors Based on Time Decomposition," Sustainability, MDPI, vol. 12(18), pages 1-33, September.
    6. Abdullah H. Al-Nefaie & Theyazn H. H. Aldhyani, 2023. "Predicting CO 2 Emissions from Traffic Vehicles for Sustainable and Smart Environment Using a Deep Learning Model," Sustainability, MDPI, vol. 15(9), pages 1-21, May.
    7. Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
    8. Fatin Nadiah Yussof & Normah Maan & Mohd Nadzri Md Reba, 2021. "LSTM Networks to Improve the Prediction of Harmful Algal Blooms in the West Coast of Sabah," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    9. Junyoung Jeong & Keuntae Cho, 2024. "Proposing Machine Learning Models Suitable for Predicting Open Data Utilization," Sustainability, MDPI, vol. 16(14), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4829-:d:1409460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.