Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Tao Zhen & Jian-lei Kong & Lei Yan, 2020. "Hybrid Deep-Learning Framework Based on Gaussian Fusion of Multiple Spatiotemporal Networks for Walking Gait Phase Recognition," Complexity, Hindawi, vol. 2020, pages 1-17, October.
- Chunling Zhang & Zunfeng Liu, 2019. "Application of big data technology in agricultural Internet of Things," International Journal of Distributed Sensor Networks, , vol. 15(10), pages 15501477198, October.
- Van Beveren, P.J.M. & Bontsema, J. & Van Straten, G. & Van Henten, E.J., 2015. "Minimal heating and cooling in a modern rose greenhouse," Applied Energy, Elsevier, vol. 137(C), pages 97-109.
- Xue-Bo Jin & Wei-Zhen Zheng & Jian-Lei Kong & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Seng Lin, 2021. "Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization," Energies, MDPI, vol. 14(6), pages 1-18, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
- Sen Lin & Yucheng Xiu & Jianlei Kong & Chengcai Yang & Chunjiang Zhao, 2023. "An Effective Pyramid Neural Network Based on Graph-Related Attentions Structure for Fine-Grained Disease and Pest Identification in Intelligent Agriculture," Agriculture, MDPI, vol. 13(3), pages 1-20, February.
- Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
- Venkataramana Veeramsetty & Arjun Mohnot & Gaurav Singal & Surender Reddy Salkuti, 2021. "Short Term Active Power Load Prediction on A 33/11 kV Substation Using Regression Models," Energies, MDPI, vol. 14(11), pages 1-21, May.
- Elham Bolandnazar & Hassan Sadrnia & Abbas Rohani & Francesco Marinello & Morteza Taki, 2023. "Application of Artificial Intelligence for Modeling the Internal Environment Condition of Polyethylene Greenhouses," Agriculture, MDPI, vol. 13(8), pages 1-16, August.
- Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- van Beveren, P.J.M. & Bontsema, J. & van Straten, G. & van Henten, E.J., 2015. "Optimal control of greenhouse climate using minimal energy and grower defined bounds," Applied Energy, Elsevier, vol. 159(C), pages 509-519.
- Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang, 2022. "Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method," Energies, MDPI, vol. 15(11), pages 1-21, June.
- Achour, Yasmine & Ouammi, Ahmed & Zejli, Driss, 2021. "Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Krishna Prakash N. & Jai Govind Singh, 2023. "Electricity price forecasting using hybrid deep learned networks," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1750-1771, November.
- Shiya Gao & Zeyu Wang & Shaoxiang Jiang & Wen Ding & Yuchen Wang & Xiufang Dong, 2022. "Optimization of Work Environment and Community Labor Health Based on Digital Model—Empirical Evidence from Developing Countries," IJERPH, MDPI, vol. 19(20), pages 1-17, October.
- Xudong Pang & Xiangchen Lu & Hao Ding & Josep M. Guerrero, 2022. "Construction of Smart Grid Load Forecast Model by Edge Computing," Energies, MDPI, vol. 15(9), pages 1-16, April.
- Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
- Krzysztof Lalik & Filip Wątorek, 2021. "Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles," Energies, MDPI, vol. 14(22), pages 1-18, November.
- Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
- Katzin, David & Marcelis, Leo F.M. & van Mourik, Simon, 2021. "Energy savings in greenhouses by transition from high-pressure sodium to LED lighting," Applied Energy, Elsevier, vol. 281(C).
- Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
- Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
- Liang Ran & Yaling Mao & Tiejiang Yuan & Guofeng Li, 2022. "Low-Carbon Transition Pathway Planning of Regional Power Systems with Electricity-Hydrogen Synergy," Energies, MDPI, vol. 15(22), pages 1-17, November.
- Giuseppina Nicolosi & Roberto Volpe & Antonio Messineo, 2017. "An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse," Energies, MDPI, vol. 10(5), pages 1-17, May.
More about this item
Keywords
intelligent agricultural greenhouse; environmental factor prediction; deep-learning encoder–decoder; self-attention mechanism; Internet of Things;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:8:p:802-:d:619723. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.