IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i16p5633-d394623.html
   My bibliography  Save this article

An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection

Author

Listed:
  • Tao Zhen

    (College of Engineering, Beijing Forestry University, Beijing 100083, China)

  • Lei Yan

    (College of Engineering, Beijing Forestry University, Beijing 100083, China)

  • Jian-lei Kong

    (Artificial Intelligence Academy, Beijing Technology and Business University, Beijing 100048, China
    National Key Laboratory of Environmental Protection Food Chain Pollution Prevention, Beijing 100048, China)

Abstract

Human-gait-phase-recognition is an important technology in the field of exoskeleton robot control and medical rehabilitation. Inertial sensors with accelerometers and gyroscopes are easy to wear, inexpensive and have great potential for analyzing gait dynamics. However, current deep-learning methods extract spatial and temporal features in isolation—while ignoring the inherent correlation in high-dimensional spaces—which limits the accuracy of a single model. This paper proposes an effective hybrid deep-learning framework based on the fusion of multiple spatiotemporal networks (FMS-Net), which is used to detect asynchronous phases from IMU signals. More specifically, it first uses a gait-information acquisition system to collect IMU sensor data fixed on the lower leg. Through data preprocessing, the framework constructs a spatial feature extractor with CNN module and a temporal feature extractor, combined with LSTM module. Finally, a skip-connection structure and the two-layer fully connected layer fusion module are used to achieve the final gait recognition. Experimental results show that this method has better identification accuracy than other comparative methods with the macro-F1 reaching 96.7%.

Suggested Citation

  • Tao Zhen & Lei Yan & Jian-lei Kong, 2020. "An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5633-:d:394623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/16/5633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/16/5633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue-Bo Jin & Xing-Hong Yu & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    2. Lei Yan & Tao Zhen & Jian-Lei Kong & Lian-Ming Wang & Xiao-Lei Zhou, 2020. "Walking Gait Phase Detection Based on Acceleration Signals Using Voting-Weighted Integrated Neural Network," Complexity, Hindawi, vol. 2020, pages 1-14, January.
    3. Yu-ting Bai & Xue-bo Jin & Xiao-yi Wang & Xiao-kai Wang & Ji-ping Xu, 2020. "Dynamic Correlation Analysis Method of Air Pollutants in Spatio-Temporal Analysis," IJERPH, MDPI, vol. 17(1), pages 1-19, January.
    4. Xue-Bo Jin & Nian-Xiang Yang & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    2. Wongchai, Anupong & Jenjeti, Durga rao & Priyadarsini, A. Indira & Deb, Nabamita & Bhardwaj, Arpit & Tomar, Pradeep, 2022. "Farm monitoring and disease prediction by classification based on deep learning architectures in sustainable agriculture," Ecological Modelling, Elsevier, vol. 474(C).
    3. Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    5. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    6. Junbeom Park & Seongju Chang, 2021. "A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
    7. Mei-Hsin Chen & Yao-Chung Chen & Tien-Yin Chou & Fang-Shii Ning, 2023. "PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    8. Artem Sher & Anton Trusov & Elena Limonova & Dmitry Nikolaev & Vladimir V. Arlazarov, 2023. "Neuron-by-Neuron Quantization for Efficient Low-Bit QNN Training," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    9. Muhammad Fahad & Tariq Javid & Hira Beenish & Adnan Ahmed Siddiqui & Ghufran Ahmed, 2021. "Extending ONTAgri with Service-Oriented Architecture towards Precision Farming Application," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    10. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    11. Hawon Chu & Jaeseong Kim & Seounghyeon Kim & Young-Kyoon Suh & Ryong Lee & Rae-Young Jang & Minwoo Park, 2020. "ST-Trie: A Novel Indexing Scheme for Efficiently Querying Heterogeneous, Spatiotemporal IoT Data," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    12. Görkem Giray & Cagatay Catal, 2021. "Design of a Data Management Reference Architecture for Sustainable Agriculture," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    13. Alessandro Scuderi & Giovanni La Via & Giuseppe Timpanaro & Luisa Sturiale, 2022. "The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    14. Yi Yang & Yuting Bai & Xiaoyi Wang & Li Wang & Xuebo Jin & Qian Sun, 2020. "Group Decision-Making Support for Sustainable Governance of Algal Bloom in Urban Lakes," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    15. Zifeng Liang, 2021. "Assessment of the Construction of a Climate Resilient City: An Empirical Study Based on the Difference in Differences Model," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    16. Ruiqing Wang & Jinlei Feng & Wu Zhang & Bo Liu & Tao Wang & Chenlu Zhang & Shaoxiang Xu & Lifu Zhang & Guanpeng Zuo & Yixi Lv & Zhe Zheng & Yu Hong & Xiuqi Wang, 2023. "Detection and Correction of Abnormal IoT Data from Tea Plantations Based on Deep Learning," Agriculture, MDPI, vol. 13(2), pages 1-20, February.
    17. Emanoel L. R. Costa & Taiane Braga & Leonardo A. Dias & Édler L. de Albuquerque & Marcelo A. C. Fernandes, 2022. "Analysis of Atmospheric Pollutant Data Using Self-Organizing Maps," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    18. Yan Guo & Xiaonan Hu & Zepeng Wang & Wei Tang & Deyu Liu & Yunzhong Luo & Hongxiang Xu, 2021. "The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(11), pages 457-467.
    19. Krzysztof Lalik & Jakub Kozak & Szymon Podlasek & Mateusz Kozek, 2022. "Self-Powered Wireless Sensor Matrix for Air Pollution Detection with a Neural Predictor," Energies, MDPI, vol. 15(6), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5633-:d:394623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.