IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i13p6801-d581631.html
   My bibliography  Save this article

A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network

Author

Listed:
  • Junbeom Park

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea)

  • Seongju Chang

    (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Deajeon 34141, Korea)

Abstract

Many countries are concerned about high particulate matter (PM) concentrations caused by rapid industrial development, which can harm both human health and the environment. To manage PM, the prediction of PM concentrations based on historical data is actively being conducted. Existing technologies for predicting PM mostly assess the model performance for the prediction of existing PM concentrations; however, PM must be forecast in advance, before it becomes highly concentrated and causes damage to the citizens living in the affected regions. Thus, it is necessary to conduct research on an index that can illustrate whether the PM concentration will increase or decrease. We developed a model that can predict whether the PM concentration might increase or decrease after a certain time, specifically for PM 2.5 (fine PM) generated by anthropogenic volatile organic compounds. An algorithm that can select a model on an hourly basis, based on the long short-term memory (LSTM) and artificial neural network (ANN) models, was developed. The proposed algorithm exhibited a higher F1-score than the LSTM, ANN, or random forest models alone. The model developed in this study could be used to predict future regional PM concentration levels more effectively.

Suggested Citation

  • Junbeom Park & Seongju Chang, 2021. "A Particulate Matter Concentration Prediction Model Based on Long Short-Term Memory and an Artificial Neural Network," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6801-:d:581631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/13/6801/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/13/6801/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinghan Xu & Weijie Ren, 2019. "Application of a Hybrid Model Based on Echo State Network and Improved Particle Swarm Optimization in PM 2.5 Concentration Forecasting: A Case Study of Beijing, China," Sustainability, MDPI, vol. 11(11), pages 1-19, May.
    2. Lifeng Wu & Xiaohui Gao & Yanli Xiao & Sifeng Liu & Yingjie Yang, 2017. "Using grey Holt–Winters model to predict the air quality index for cities in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1003-1012, September.
    3. Xue-Bo Jin & Nian-Xiang Yang & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    2. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    3. Dinggao Liu & Zhenpeng Tang & Yi Cai, 2022. "A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    4. Mei-Hsin Chen & Yao-Chung Chen & Tien-Yin Chou & Fang-Shii Ning, 2023. "PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework," IJERPH, MDPI, vol. 20(5), pages 1-13, February.
    5. Kayoung Kim & Young Ho Byun & Donghyuk Lee & Noeon Park, 2019. "Understanding the Global Status of Particulate Matter with Respect to Research Topics and Research Networks," Sustainability, MDPI, vol. 11(20), pages 1-16, October.
    6. Artem Sher & Anton Trusov & Elena Limonova & Dmitry Nikolaev & Vladimir V. Arlazarov, 2023. "Neuron-by-Neuron Quantization for Efficient Low-Bit QNN Training," Mathematics, MDPI, vol. 11(9), pages 1-17, April.
    7. Simona Tondelli & Ebrahim Farhadi & Bahareh Akbari Monfared & Mehdi Ataeian & Hossein Tahmasebi Moghaddam & Marco Dettori & Lucia Saganeiti & Beniamino Murgante, 2022. "Air Quality and Environmental Effects Due to COVID-19 in Tehran, Iran: Lessons for Sustainability," Sustainability, MDPI, vol. 14(22), pages 1-28, November.
    8. Gao, Mingyun & Yang, Honglin & Xiao, Qinzi & Goh, Mark, 2022. "COVID-19 lockdowns and air quality: Evidence from grey spatiotemporal forecasts," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    9. Ying Wang & Jianzhou Wang & Hongmin Li & Hufang Yang & Zhiwu Li, 2022. "Multi‐step air quality index forecasting via data preprocessing, sequence reconstruction, and improved multi‐objective optimization algorithm," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1483-1511, November.
    10. Xue-Bo Jin & Xing-Hong Yu & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    11. Weijie Zhou & Huihui Tao & Huimin Jiang, 2022. "Application of a Novel Optimized Fractional Grey Holt-Winters Model in Energy Forecasting," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    12. Wu, Wenqing & Ma, Xin & Zeng, Bo & Wang, Yong & Cai, Wei, 2019. "Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model," Renewable Energy, Elsevier, vol. 140(C), pages 70-87.
    13. Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    14. Tao Zhen & Lei Yan & Jian-lei Kong, 2020. "An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
    15. Rameshwar Garg & Shriya Barpanda & Girish Rao Salanke N S & Ramya S, 2022. "Machine Learning Algorithms for Time Series Analysis and Forecasting," Papers 2211.14387, arXiv.org.
    16. Wongchai, Anupong & Jenjeti, Durga rao & Priyadarsini, A. Indira & Deb, Nabamita & Bhardwaj, Arpit & Tomar, Pradeep, 2022. "Farm monitoring and disease prediction by classification based on deep learning architectures in sustainable agriculture," Ecological Modelling, Elsevier, vol. 474(C).
    17. Pei Du & Jianzhou Wang & Wendong Yang & Tong Niu, 2022. "A novel hybrid fine particulate matter (PM2.5) forecasting and its further application system: Case studies in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 64-85, January.
    18. Amirreza Naderipour & Zulkurnain Abdul-Malek & Saber Arabi Nowdeh & Foad H. Gandoman & Mohammad Jafar Hadidian Moghaddam, 2019. "A Multi-Objective Optimization Problem for Optimal Site Selection of Wind Turbines for Reduce Losses and Improve Voltage Profile of Distribution Grids," Energies, MDPI, vol. 12(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:13:p:6801-:d:581631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.