IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v52y2021i9p1806-1821.html
   My bibliography  Save this article

Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses

Author

Listed:
  • Ling Xu
  • Feng Ding
  • Quanmin Zhu

Abstract

In this research, the issue of parameter estimation for control systems is considered to develop a highly efficient estimation approach for the purpose of satisfying the need of industrial process modelling. For dynamical production processes, an error objective function in accordance with the dynamically sampled data is constructed for on-line identification. In order to simulate the instantaneous response of dynamical processes, the experimental scheme of impulse responses is adopted, and the observational data of impulse responses are used as the identification experimental data. In order to acquire high accuracy and stable performance, a hierarchical least mean square method is designed by means of the decomposition technique and the hierarchical principle. Finally, the superiority of the hierarchical least mean square approach is verified by the comparison simulation experiment and the effectiveness of the hierarchical least mean square method is proved by the detailed numerical examples.

Suggested Citation

  • Ling Xu & Feng Ding & Quanmin Zhu, 2021. "Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(9), pages 1806-1821, July.
  • Handle: RePEc:taf:tsysxx:v:52:y:2021:i:9:p:1806-1821
    DOI: 10.1080/00207721.2020.1871107
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2020.1871107
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2020.1871107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ce Zhang & Xiangxiang Meng & Yan Ji, 2023. "Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models," Mathematics, MDPI, vol. 11(13), pages 1-22, June.
    2. Naveed Ahmed Malik & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Sultan S. Alshamrani, 2022. "Knacks of Fractional Order Swarming Intelligence for Parameter Estimation of Harmonics in Electrical Systems," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    3. Jing, Shaoxue, 2023. "Time-delay Hammerstein system identification using modified cross-correlation method and variable stacking length multi-error algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 288-300.
    4. Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    5. Jianlei Kong & Hongxing Wang & Chengcai Yang & Xuebo Jin & Min Zuo & Xin Zhang, 2022. "A Spatial Feature-Enhanced Attention Neural Network with High-Order Pooling Representation for Application in Pest and Disease Recognition," Agriculture, MDPI, vol. 12(4), pages 1-30, March.
    6. Mi, Wen & Qian, Tao, 2022. "System identification of hammerstein models by using backward shift algorithm," Applied Mathematics and Computation, Elsevier, vol. 413(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:52:y:2021:i:9:p:1806-1821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.