IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2137-d842560.html
   My bibliography  Save this article

Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples

Author

Listed:
  • Liang Wang

    (School of Mathematics, Yunnan Normal University, Kunming 650500, China)

  • Sanku Dey

    (Department of Statistics, St. Anthony’s College, Shillong 793001, Meghalaya, India)

  • Yogesh Mani Tripathi

    (Department of Mathematics, Indian Institute of Technology Patna, Patna 800013, Bihar, India)

Abstract

This paper explores statistical inferences when the lifetime of product follows the inverse Nakagami distribution using progressive Type-II censored data. Likelihood-based and maximum product of spacing (MPS)-based methods are considered for estimating the parameters of the model. In addition, approximate confidence intervals are constructed via the asymptotic theory using both likelihood and product spacing functions. Based on traditional likelihood and the product of spacing functions, Bayesian estimates are also considered under a squared error loss function using non-informative priors, and Gibbs sampling based on the MCMC algorithm is proposed to approximate the Bayes estimates, where the highest posterior density credible intervals of the parameters are obtained. Numerical studies are presented to compare the proposed estimators using Monte Carlo simulations. To demonstrate the proposed methodology in a real-life scenario, a well-known data set on agricultural machine elevators with high defect rates is also analyzed for illustration.

Suggested Citation

  • Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2137-:d:842560
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    2. Hui Zhao & Qiwei Wu & Gang Li & Jianguo Sun, 2020. "Simultaneous Estimation and Variable Selection for Interval-Censored Data With Broken Adaptive Ridge Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 204-216, January.
    3. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.
    4. M. E. Ghitany & J. Mazucheli & A. F. B. Menezes & F. Alqallaf, 2019. "The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3423-3438, July.
    5. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Antonio Punzo, 2019. "A new look at the inverse Gaussian distribution with applications to insurance and economic data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1260-1287, May.
    7. Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
    8. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    9. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
    2. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    3. Aleksey S. Gvozdarev, 2024. "Closed-Form Performance Analysis of the Inverse Power Lomax Fading Channel Model," Mathematics, MDPI, vol. 12(19), pages 1-25, October.
    4. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    5. Ajit Chaturvedi & Sudeep R. Bapat & Neeraj Joshi, 2022. "Sequential Estimation of an Inverse Gaussian Mean with Known Coefficient of Variation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 402-420, May.
    6. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    7. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    8. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    9. Marco Capaldo & Antonio Di Crescenzo & Alessandra Meoli, 2024. "Cumulative information generating function and generalized Gini functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 775-803, October.
    10. Xiaoyu Shi & Hanyu Zhang & Guanjie Wang, 2024. "ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
    11. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    12. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
    14. Christina Empacher & Udo Kamps & Grigoriy Volovskiy, 2023. "Statistical Prediction of Future Sports Records Based on Record Values," Stats, MDPI, vol. 6(1), pages 1-17, January.
    15. Muhammad Shafeeq ul Rehman Khan & Zamir Hussain & Ishfaq Ahmad, 2021. "Effects of L-Moments, Maximum Likelihood and Maximum Product of Spacing Estimation Methods in Using Pearson Type-3 Distribution for Modeling Extreme Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1415-1431, March.
    16. Ehab M. Almetwally & Hanan A. Haj Ahmad, 2020. "A new generalization of the Pareto distribution and its applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 61-84, December.
    17. Chang, Ping-Chen, 2022. "MC-based simulation approach for two-terminal multi-state network reliability evaluation without knowing d-MCs," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    18. Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
    19. Du, Mingyue & Zhao, Xingqiu, 2024. "A conditional approach for regression analysis of case K interval-censored failure time data with informative censoring," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    20. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2137-:d:842560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.