IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v21y2005i02p472-476_05.html
   My bibliography  Save this article

An Alternative To Maximum Likelihood Based On Spacings

Author

Listed:
  • Anatolyev, Stanislav
  • Kosenok, Grigory

Abstract

In the statistics literature, asymptotic properties of the Maximum Product of Spacings estimator are derived from first principles. We propose an alternative derivation based on the comparison between its objective function and that of the Maximum Likelihood estimator.We thank the co-editor Paolo Paruolo for his patience and an anonymous referee for providing references to the statistics literature.

Suggested Citation

  • Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
  • Handle: RePEc:cup:etheor:v:21:y:2005:i:02:p:472-476_05
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466605050255/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grigoriy Volovskiy & Udo Kamps, 2020. "Maximum product of spacings prediction of future record values," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 853-868, October.
    2. Suparna Basu & Sanjay K. Singh & Umesh Singh, 2019. "Estimation of Inverse Lindley Distribution Using Product of Spacings Function for Hybrid Censored Data," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1377-1394, December.
    3. Ehab M. Almetwally & Hanan A. Haj Ahmad, 2020. "A new generalization of the Pareto distribution and its applications," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 61-84, December.
    4. Hanem Mohamed & Salwa A. Mousa & Amina E. Abo-Hussien & Magda M. Ismail, 2022. "Estimation of the Daily Recovery Cases in Egypt for COVID-19 Using Power Odd Generalized Exponential Lomax Distribution," Annals of Data Science, Springer, vol. 9(1), pages 71-99, February.
    5. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    6. Mazen Nassar & Farouq Mohammad A. Alam, 2022. "Analysis of Modified Kies Exponential Distribution with Constant Stress Partially Accelerated Life Tests under Type-II Censoring," Mathematics, MDPI, vol. 10(5), pages 1-26, March.
    7. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    8. Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
    9. Mazen Nassar & Ahmed Elshahhat, 2023. "Statistical Analysis of Inverse Weibull Constant-Stress Partially Accelerated Life Tests with Adaptive Progressively Type I Censored Data," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    10. Cesar Augusto Taconeli & Idemauro Antonio Rodrigues Lara, 2022. "Improved confidence intervals based on ranked set sampling designs within a parametric bootstrap approach," Computational Statistics, Springer, vol. 37(5), pages 2267-2293, November.
    11. Mohamed Sief & Xinsheng Liu & Abd El-Raheem Mohamed Abd El-Raheem, 2024. "Inference for a constant-stress model under progressive type-II censored data from the truncated normal distribution," Computational Statistics, Springer, vol. 39(5), pages 2791-2820, July.
    12. Suparna Basu & Sanjay Kumar Singh & Umesh Singh, 2017. "Parameter estimation of inverse Lindley distribution for Type-I censored data," Computational Statistics, Springer, vol. 32(1), pages 367-385, March.
    13. Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora, 2024. "Statistical inference of the exponentiated exponential distribution based on progressive type-II censoring with optimal scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3833-3853, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:21:y:2005:i:02:p:472-476_05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.