IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v48y2019i14p3423-3438.html
   My bibliography  Save this article

The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval

Author

Listed:
  • M. E. Ghitany
  • J. Mazucheli
  • A. F. B. Menezes
  • F. Alqallaf

Abstract

A new two-parameter distribution over the unit interval, called the Unit-Inverse Gaussian distribution, is introduced and studied in detail. The proposed distribution shares many properties with other known distributions on the unit interval, such as Beta, Johnson SB, Unit-Gamma, and Kumaraswamy distributions. Estimation of the parameters of the proposed distribution are obtained by transforming the data to the inverse Gaussian distribution. Unlike most distributions on the unit interval, the maximum likelihood or method of moments estimators of the parameters of the proposed distribution are expressed in simple closed forms which do not need iterative methods to compute. Application of the proposed distribution to a real data set shows better fit than many known two-parameter distributions on the unit interval.

Suggested Citation

  • M. E. Ghitany & J. Mazucheli & A. F. B. Menezes & F. Alqallaf, 2019. "The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3423-3438, July.
  • Handle: RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3423-3438
    DOI: 10.1080/03610926.2018.1476717
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2018.1476717
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2018.1476717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
    2. Muhammad Ahsan ul Haq & Sharqa Hashmi & Khaoula Aidi & Pedro Luiz Ramos & Francisco Louzada, 2023. "Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test," Annals of Data Science, Springer, vol. 10(2), pages 415-440, April.
    3. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    4. Mohammed K. Shakhatreh & Mohammad A. Aljarrah, 2023. "Bayesian Analysis of Unit Log-Logistic Distribution Using Non-Informative Priors," Mathematics, MDPI, vol. 11(24), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:48:y:2019:i:14:p:3423-3438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.