IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v46y2019i7p1260-1287.html
   My bibliography  Save this article

A new look at the inverse Gaussian distribution with applications to insurance and economic data

Author

Listed:
  • Antonio Punzo

Abstract

Insurance and economic data are often positive, and we need to take into account this peculiarity in choosing a statistical model for their distribution. An example is the inverse Gaussian (IG), which is one of the most famous and considered distributions with positive support. With the aim of increasing the use of the IG distribution on insurance and economic data, we propose a convenient mode-based parameterization yielding the reparametrized IG (rIG) distribution; it allows/simplifies the use of the IG distribution in various branches of statistics, and we give some examples. In nonparametric statistics, we define a smoother based on rIG kernels. By construction, the estimator is well-defined and does not allocate probability mass to unrealistic negative values. We adopt likelihood cross-validation to select the smoothing parameter. In robust statistics, we propose the contaminated IG distribution, a heavy-tailed generalization of the rIG distribution to accommodate mild outliers. Finally, for model-based clustering and semiparametric density estimation, we present finite mixtures of rIG distributions. We use the EM algorithm to obtain maximum likelihood estimates of the parameters of the mixture and contaminated models. We use insurance data about bodily injury claims, and economic data about incomes of Italian households, to illustrate the models.

Suggested Citation

  • Antonio Punzo, 2019. "A new look at the inverse Gaussian distribution with applications to insurance and economic data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(7), pages 1260-1287, May.
  • Handle: RePEc:taf:japsta:v:46:y:2019:i:7:p:1260-1287
    DOI: 10.1080/02664763.2018.1542668
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2018.1542668
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2018.1542668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Z. Afify & Ahmed M. Gemeay & Noor Akma Ibrahim, 2020. "The Heavy-Tailed Exponential Distribution: Risk Measures, Estimation, and Application to Actuarial Data," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    2. Ajit Chaturvedi & Sudeep R. Bapat & Neeraj Joshi, 2022. "Sequential Estimation of an Inverse Gaussian Mean with Known Coefficient of Variation," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 402-420, May.
    3. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    4. Wei Zhao & Saima K Khosa & Zubair Ahmad & Muhammad Aslam & Ahmed Z Afify, 2020. "Type-I heavy tailed family with applications in medicine, engineering and insurance," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    5. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Punzo, Antonio & Bagnato, Luca, 2021. "Modeling the cryptocurrency return distribution via Laplace scale mixtures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Yang, Yu-Chen & Lin, Tsung-I & Castro, Luis M. & Wang, Wan-Lun, 2020. "Extending finite mixtures of t linear mixed-effects models with concomitant covariates," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:46:y:2019:i:7:p:1260-1287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.