IDEAS home Printed from https://ideas.repec.org/a/spr/opsear/v61y2024i2d10.1007_s12597-023-00713-5.html
   My bibliography  Save this article

Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution

Author

Listed:
  • Hossein Pasha-Zanoosi

    (Khorramshahr University of Marine Science and Technology)

Abstract

In this endeavour, we study the statistical inference of multicomponent stress-strength reliability when components of the system have two paired elements experiencing common random stress. The k strength variables $$(X_1,Y_1),\ldots ,(X_k,Y_k)$$ ( X 1 , Y 1 ) , … , ( X k , Y k ) follow a bivariate Topp-Leone distribution and the stress variable which follows a Topp-Leone distribution. This system is unfailing when at least $$s(1\le s\le k)$$ s ( 1 ≤ s ≤ k ) out of k components simultaneously activate. The maximum likelihood estimate along with its asymptotic confidence interval, the uniformly minimum variance unbiased estimate, and the exact Bayes estimate of stress-strength reliability are derived. Further, we determined the Bayes estimates of the stress-strength reliability via different methods such as the Tierney and Kadane approximation, Lindley’s approximation, and the Markov Chain Monte Carlo (MCMC) method, to compare their performances with the exact Bayes estimate. Also, the highest probability density credible interval is obtained using the MCMC method. Monte Carlo simulations are implemented to compare the different suggested methods. Ultimately, the analysis of one real data is investigated for illustrative purposes.

Suggested Citation

  • Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
  • Handle: RePEc:spr:opsear:v:61:y:2024:i:2:d:10.1007_s12597-023-00713-5
    DOI: 10.1007/s12597-023-00713-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12597-023-00713-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12597-023-00713-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanku Dey & Josmar Mazucheli & M. Z. Anis, 2017. "Estimation of reliability of multicomponent stress–strength for a Kumaraswamy distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(4), pages 1560-1572, February.
    2. Akram Kohansal, 2019. "On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample," Statistical Papers, Springer, vol. 60(6), pages 2185-2224, December.
    3. Fatih Kızılaslan & Mustafa Nadar, 2018. "Estimation of reliability in a multicomponent stress–strength model based on a bivariate Kumaraswamy distribution," Statistical Papers, Springer, vol. 59(1), pages 307-340, March.
    4. Tanmay Kayal & Yogesh Mani Tripathi & Sanku Dey & Shuo-Jye Wu, 2020. "On estimating the reliability in a multicomponent stress-strength model based on Chen distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2429-2447, May.
    5. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.
    6. Vikas Kumar Sharma & Sudhanshu V. Singh & Komal Shekhawat, 2022. "Exponentiated Teissier distribution with increasing, decreasing and bathtub hazard functions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(2), pages 371-393, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shubham Saini & Renu Garg, 2022. "Reliability inference for multicomponent stress–strength model from Kumaraswamy-G family of distributions based on progressively first failure censored samples," Computational Statistics, Springer, vol. 37(4), pages 1795-1837, September.
    2. Liang Wang & Huizhong Lin & Kambiz Ahmadi & Yuhlong Lio, 2021. "Estimation of Stress-Strength Reliability for Multicomponent System with Rayleigh Data," Energies, MDPI, vol. 14(23), pages 1-23, November.
    3. Yuhlong Lio & Tzong-Ru Tsai & Liang Wang & Ignacio Pascual Cecilio Tejada, 2022. "Inferences of the Multicomponent Stress–Strength Reliability for Burr XII Distributions," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    4. Kundan Singh & Amulya Kumar Mahto & Yogesh Mani Tripathi & Liang Wang, 2024. "Estimation in a multicomponent stress-strength model for progressive censored lognormal distribution," Journal of Risk and Reliability, , vol. 238(3), pages 622-642, June.
    5. Prashant Kumar Sonker & Mukesh Kumar & Agni Saroj, 2023. "Stress–strength reliability models on power-Muth distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 173-195, March.
    6. Devendra Pratap Singh & Mayank Kumar Jha & Yogesh Mani Tripathi & Liang Wang, 2023. "Inference on a Multicomponent Stress-Strength Model Based on Unit-Burr III Distributions," Annals of Data Science, Springer, vol. 10(5), pages 1329-1359, October.
    7. M. S. Kotb & M. Z. Raqab, 2021. "Estimation of reliability for multi-component stress–strength model based on modified Weibull distribution," Statistical Papers, Springer, vol. 62(6), pages 2763-2797, December.
    8. Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
    9. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    10. Hassan S. Bakouch & Tassaddaq Hussain & Marina Tošić & Vladica S. Stojanović & Najla Qarmalah, 2023. "Unit Exponential Probability Distribution: Characterization and Applications in Environmental and Engineering Data Modeling," Mathematics, MDPI, vol. 11(19), pages 1-22, October.
    11. Farha Sultana & Yogesh Mani Tripathi & Shuo-Jye Wu & Tanmay Sen, 2022. "Inference for Kumaraswamy Distribution Based on Type I Progressive Hybrid Censoring," Annals of Data Science, Springer, vol. 9(6), pages 1283-1307, December.
    12. Vlad Stefan Barbu & Alex Karagrigoriou & Andreas Makrides, 2021. "Reliability and Inference for Multi State Systems: The Generalized Kumaraswamy Case," Mathematics, MDPI, vol. 9(16), pages 1-17, August.
    13. Tzong-Ru Tsai & Yuhlong Lio & Jyun-You Chiang & Ya-Wen Chang, 2023. "Stress–Strength Inference on the Multicomponent Model Based on Generalized Exponential Distributions under Type-I Hybrid Censoring," Mathematics, MDPI, vol. 11(5), pages 1-17, March.
    14. Amulya Kumar Mahto & Yogesh Mani Tripathi, 2020. "Estimation of reliability in a multicomponent stress-strength model for inverted exponentiated Rayleigh distribution under progressive censoring," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1043-1069, December.
    15. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:61:y:2024:i:2:d:10.1007_s12597-023-00713-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.