IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v35y2021i5d10.1007_s11269-021-02767-w.html
   My bibliography  Save this article

Effects of L-Moments, Maximum Likelihood and Maximum Product of Spacing Estimation Methods in Using Pearson Type-3 Distribution for Modeling Extreme Values

Author

Listed:
  • Muhammad Shafeeq ul Rehman Khan

    (International Islamic University)

  • Zamir Hussain

    (National University of Sciences and Technology (NUST))

  • Ishfaq Ahmad

    (International Islamic University)

Abstract

Modeling of extreme values like annual maxima’s is important in many applications. Pearson Type-3 (PE3) distribution is an important probability distribution, widely used for modeling of extreme values with a variety of estimation methods. The focus of this study is to assess the effects of three methods of estimation of parameters for PE3 distribution namely L-moments (LM), maximum likelihood estimation (MLE) and maximum product of spacing (MPS). Assessment is based on a two-step approach. The first step uses simulation experiments while the second is based on empirical analyses, by varying size and shape characteristics of the sample. The study concluded that the estimates using LM method have low bias in case of small sample and when data exhibits small to moderate skewness and kurtosis. MPS is a reasonable alternative and provides efficient estimates, especially when the data shows large skewness and kurtosis with small to moderate size of sample. MLE method is useful in case of very large sample size with low values of shape characteristics of data. The results of this study provide useful guidelines for fitting PE3 distribution, especially to extreme values.

Suggested Citation

  • Muhammad Shafeeq ul Rehman Khan & Zamir Hussain & Ishfaq Ahmad, 2021. "Effects of L-Moments, Maximum Likelihood and Maximum Product of Spacing Estimation Methods in Using Pearson Type-3 Distribution for Modeling Extreme Values," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1415-1431, March.
  • Handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02767-w
    DOI: 10.1007/s11269-021-02767-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-021-02767-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-021-02767-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zamir Hussain, 2017. "Estimation of flood quantiles at gauged and ungauged sites of the four major rivers of Punjab, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 107-123, March.
    2. T. K. Drissia & V. Jothiprakash & A. B. Anitha, 2019. "Flood Frequency Analysis Using L Moments: a Comparison between At-Site and Regional Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(3), pages 1013-1037, February.
    3. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    4. Takvor Soukissian & Christos Tsalis, 2015. "The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1777-1809, September.
    5. Guan-Jun Lei & Jun-Xian Yin & Wen-Chuan Wang & Hao Wang, 2018. "The Analysis and Improvement of the Fuzzy Weighted Optimum Curve-Fitting Method of Pearson – Type III Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4511-4526, November.
    6. Wei Li & Jianzhong Zhou & Huaiwei Sun & Kuaile Feng & Hairong Zhang & Muhammad Tayyab, 2017. "Impact of Distribution Type in Bayes Probability Flood Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 961-977, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yenming J. & Chang, Kuo-Hao & Sheu, Jiuh-Biing & Liu, Chih-Hao & Chang, Chy-Chang & Chang, Chieh-Hsin & Wang, Guan-Xun, 2023. "Vulnerability-based regionalization for disaster management considering storms and earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    2. Hanlin Li & Longxia Qian & Jianhong Yang & Suzhen Dang & Mei Hong, 2023. "Parameter Estimation for Univariate Hydrological Distribution Using Improved Bootstrap with Small Samples," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1055-1082, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
    2. Yifan Jia & Songbai Song & Liting Ge, 2023. "Trimmed L-Moments of the Pearson Type III Distribution for Flood Frequency Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1321-1340, February.
    3. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    4. Hu, Xiaonong & Fang, Genshen & Yang, Jiayu & Zhao, Lin & Ge, Yaojun, 2023. "Simplified models for uncertainty quantification of extreme events using Monte Carlo technique," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Elio Chiodo & Bassel Diban & Giovanni Mazzanti & Fabio De Angelis, 2023. "A Review on Wind Speed Extreme Values Modeling and Bayes Estimation for Wind Power Plant Design and Construction," Energies, MDPI, vol. 16(14), pages 1-20, July.
    6. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    7. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    8. Andrea Gioia & Maria Francesca Bruno & Vincenzo Totaro & Vito Iacobellis, 2020. "Parametric Assessment of Trend Test Power in a Changing Environment," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    9. Pezhman Allahbakhshian-Farsani & Mehdi Vafakhah & Hadi Khosravi-Farsani & Elke Hertig, 2020. "Regional Flood Frequency Analysis Through Some Machine Learning Models in Semi-arid Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 2887-2909, July.
    10. Hanlin Li & Longxia Qian & Jianhong Yang & Suzhen Dang & Mei Hong, 2023. "Parameter Estimation for Univariate Hydrological Distribution Using Improved Bootstrap with Small Samples," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1055-1082, February.
    11. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    12. I. E. Okorie & A. C. Akpanta & J. Ohakwe & D. C. Chikezie & C. U. Onyemachi & M. C. Ugwu, 2019. "A Note on Modeling the Maxima of Lagos Rainfall," Annals of Data Science, Springer, vol. 6(2), pages 341-359, June.
    13. Kai Wang & Shaojie Zhang, 2021. "Rainfall-induced landslides assessment in the Fengjie County, Three-Gorge reservoir area, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 451-478, August.
    14. O. E. Abo-Kasem & Ehab M. Almetwally & Wael S. Abu El Azm, 2023. "Inferential Survival Analysis for Inverted NH Distribution Under Adaptive Progressive Hybrid Censoring with Application of Transformer Insulation," Annals of Data Science, Springer, vol. 10(5), pages 1237-1284, October.
    15. Jianzhong Zhou & Kuaile Feng & Yi Liu & Chao Zhou & Feifei He & Guangbiao Liu & Zhongzheng He, 2020. "A Hydrologic Uncertainty Processor Using Linear Derivation in the Normal Quantile Transform Space," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3649-3665, September.
    16. R. Alshenawy & Ali Al-Alwan & Ehab M. Almetwally & Ahmed Z. Afify & Hisham M. Almongy, 2020. "Progressive Type-II Censoring Schemes of Extended Odd Weibull Exponential Distribution with Applications in Medicine and Engineering," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    17. Kuaile Feng & Jianzhong Zhou & Yi Liu & Chengwei Lu & Zhongzheng He, 2019. "Hydrological Uncertainty Processor (HUP) with Estimation of the Marginal Distribution by a Gaussian Mixture Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 2975-2990, July.
    18. Dimitrios N. Konispoliatis & Georgios M. Katsaounis & Dimitrios I. Manolas & Takvor H. Soukissian & Stylianos Polyzos & Thomas P. Mazarakos & Spyros G. Voutsinas & Spyridon A. Mavrakos, 2021. "REFOS: A Renewable Energy Multi-Purpose Floating Offshore System," Energies, MDPI, vol. 14(11), pages 1-28, May.
    19. Oluwatobi Aiyelokun & Quoc Bao Pham & Oluwafunbi Aiyelokun & Anurag Malik & S. Adarsh & Babak Mohammadi & Nguyen Thi Thuy Linh & Mohammad Zakwan, 2021. "Credibility of design rainfall estimates for drainage infrastructures: extent of disregard in Nigeria and proposed framework for practice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1557-1588, November.
    20. Wentong Hu & Wenquan Gu & Donghao Miao & Dongguo Shao, 2022. "Research on the Ecological Flow and Water Replenishment Thresholds for Diversion Rivers Based on the MC-LOR Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5353-5369, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:35:y:2021:i:5:d:10.1007_s11269-021-02767-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.