IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i1d10.1007_s00180-022-01239-y.html
   My bibliography  Save this article

Analysis of progressive type-II censored gamma distribution

Author

Listed:
  • Sanku Dey

    (St. Anthony’s College)

  • Ahmed Elshahhat

    (Zagazig University)

  • Mazen Nassar

    (King Abdulaziz University
    Zagazig University)

Abstract

The aim of this study is to describe the both frequentist and Bayesian parametric estimation methods for the gamma distribution using progressive Type II censoring data. We first take into account, maximum likelihood method and its competitive method, known as the maximum product of spacing method for estimation of parameters of the model. In addition, approximate confidence intervals based on asymptotic theory have been considered for both the methods. Further, based on flexible gamma priors for the shape and scale parameters, Bayes estimators under the assumption of squared error loss function are obtained using likelihood and maximum product of spacing functions, and also the associated highest posterior density credible intervals of the parameters are obtained. Monte-Carlo simulations are carried out to examine the performance of the proposed estimates using various criteria. We further present an optimal progressive censoring plan among different competing censoring plans using three optimality criteria. Finally, to show the applicability of the proposed methodologies in a real-life situation, one engineering data set and a clinical data set are investigated. The numerical results confirm that our proposed methods work satisfactorily.

Suggested Citation

  • Sanku Dey & Ahmed Elshahhat & Mazen Nassar, 2023. "Analysis of progressive type-II censored gamma distribution," Computational Statistics, Springer, vol. 38(1), pages 481-508, March.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01239-y
    DOI: 10.1007/s00180-022-01239-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01239-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01239-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanku Dey & Mazen Nassar, 2020. "Classical methods of estimation on constant stress accelerated life tests under exponentiated Lindley distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 975-996, April.
    2. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    3. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    4. Pavia, Jose M., 2015. "Testing Goodness-of-Fit with the Kernel Density Estimator: GoFKernel," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(c01).
    5. Sukhdev Singh & Sanku Dey & Devendra Kumar, 2020. "Statistical inference based on generalized Lindley record values," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(9), pages 1543-1561, June.
    6. Anatolyev, Stanislav & Kosenok, Grigory, 2005. "An Alternative To Maximum Likelihood Based On Spacings," Econometric Theory, Cambridge University Press, vol. 21(2), pages 472-476, April.
    7. El-Sherpieny, El-Sayed A. & Almetwally, Ehab M. & Muhammed, Hiba Z., 2020. "Progressive Type-II hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    8. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    9. Hideki Nagatsuka & N. Balakrishnan & Toshinari Kamakura, 2014. "A Consistent Method of Estimation For The Three-Parameter Gamma Distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(18), pages 3905-3926, September.
    10. Abdullah M. Almarashi & Muhammad Aslam & Sami Ullah Khan, 2021. "Process Monitoring for Gamma Distributed Product under Neutrosophic Statistics Using Resampling Scheme," Journal of Mathematics, Hindawi, vol. 2021, pages 1-12, February.
    11. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    2. EL-Sayed A. El-Sherpieny & Ahmed Elshahhat & Nader M. Abdallah, 2024. "Statistical Analysis of Improved Type-II Adaptive Progressive Hybrid Censored NH Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 721-754, August.
    3. Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora, 2024. "Statistical inference of the exponentiated exponential distribution based on progressive type-II censoring with optimal scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3833-3853, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazen Nassar & Ahmed Elshahhat, 2023. "Statistical Analysis of Inverse Weibull Constant-Stress Partially Accelerated Life Tests with Adaptive Progressively Type I Censored Data," Mathematics, MDPI, vol. 11(2), pages 1-29, January.
    2. Refah Alotaibi & Mazen Nassar & Ahmed Elshahhat, 2022. "Computational Analysis of XLindley Parameters Using Adaptive Type-II Progressive Hybrid Censoring with Applications in Chemical Engineering," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
    3. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    4. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    5. Mohamed Sief & Xinsheng Liu & Abd El-Raheem Mohamed Abd El-Raheem, 2024. "Inference for a constant-stress model under progressive type-II censored data from the truncated normal distribution," Computational Statistics, Springer, vol. 39(5), pages 2791-2820, July.
    6. Ahmed Elshahhat & Refah Alotaibi & Mazen Nassar, 2022. "Inferences for Nadarajah–Haghighi Parameters via Type-II Adaptive Progressive Hybrid Censoring with Applications," Mathematics, MDPI, vol. 10(20), pages 1-19, October.
    7. Ahmed Elshahhat & Mazen Nassar, 2021. "Bayesian survival analysis for adaptive Type-II progressive hybrid censored Hjorth data," Computational Statistics, Springer, vol. 36(3), pages 1965-1990, September.
    8. Mazen Nassar & Farouq Mohammad A. Alam, 2022. "Analysis of Modified Kies Exponential Distribution with Constant Stress Partially Accelerated Life Tests under Type-II Censoring," Mathematics, MDPI, vol. 10(5), pages 1-26, March.
    9. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    10. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    11. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    12. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    13. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    14. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    15. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    16. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    17. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    18. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    19. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    20. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:1:d:10.1007_s00180-022-01239-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.