IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i10p1599-d1398094.html
   My bibliography  Save this article

New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring

Author

Listed:
  • Syed Ejaz Ahmed

    (Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada)

  • Reza Arabi Belaghi

    (Unit of Applied Statistics and Mathematics, Department of Energy and Technology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden)

  • Abdulkadir Hussein

    (Department of Mathematics and Statistics, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Alireza Safariyan

    (Department of Statistics, Jahrom University, Jahrom 74137-66171, Iran)

Abstract

Estimation of reliability and stress–strength parameters is important in the manufacturing industry. In this paper, we develop shrinkage-type estimators for the reliability and stress–strength parameters based on progressively censored data from a rich class of distributions. These new estimators improve the performance of the commonly used Maximum Likelihood Estimators (MLEs) by reducing their mean squared errors. We provide analytical asymptotic and bootstrap confidence intervals for the targeted parameters. Through a detailed simulation study, we demonstrate that the new estimators have better performance than the MLEs. Finally, we illustrate the application of the new methods to two industrial data sets, showcasing their practical relevance and effectiveness.

Suggested Citation

  • Syed Ejaz Ahmed & Reza Arabi Belaghi & Abdulkadir Hussein & Alireza Safariyan, 2024. "New and Efficient Estimators of Reliability Characteristics for a Family of Lifetime Distributions under Progressive Censoring," Mathematics, MDPI, vol. 12(10), pages 1-18, May.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1599-:d:1398094
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/10/1599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/10/1599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajit Chaturvedi & Shantanu Vyas, 2017. "Estimation and Testing Procedures for the Reliability Functions of Three Parameter Burr Distribution under Censorings," Statistica, Department of Statistics, University of Bologna, vol. 77(3), pages 207-235.
    2. Ajit Chaturvedi & Shantanu Vyas, 2017. "Estimation and Testing procedures for the Reliability functions of Exponentiated distributions under censorings," Statistica, Department of Statistics, University of Bologna, vol. 77(1), pages 13-31.
    3. Roozbeh, Mahdi, 2015. "Shrinkage ridge estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 56-74.
    4. Cramer, Erhard & Schmiedt, Anja Bettina, 2011. "Progressively Type-II censored competing risks data from Lomax distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1285-1303, March.
    5. Akram Kohansal & Shirin Shoaee, 2021. "Bayesian and classical estimation of reliability in a multicomponent stress-strength model under adaptive hybrid progressive censored data," Statistical Papers, Springer, vol. 62(1), pages 309-359, February.
    6. Yuge Du & Wenhao Gui, 2022. "Statistical inference of adaptive type II progressive hybrid censored data with dependent competing risks under bivariate exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(12), pages 3120-3140, September.
    7. Ajit Chaturvedi & Shruti Nandchahal, 2016. "Shrinkage Estimators of the Reliability Characteristics of a Family of Lifetime Distributions," Statistica, Department of Statistics, University of Bologna, vol. 76(1), pages 57-82.
    8. Mazen Nassar & Refah Alotaibi & Ahmed Elshahhat, 2023. "Reliability Estimation of XLindley Constant-Stress Partially Accelerated Life Tests using Progressively Censored Samples," Mathematics, MDPI, vol. 11(6), pages 1-24, March.
    9. Mahdi Roozbeh & Mohammad Arashi, 2016. "Shrinkage ridge regression in partial linear models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(20), pages 6022-6044, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahadır Yüzbaşı & Mohammad Arashi & S. Ejaz Ahmed, 2020. "Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime," International Statistical Review, International Statistical Institute, vol. 88(1), pages 229-251, April.
    2. Manoj Chacko & Rakhi Mohan, 2019. "Bayesian analysis of Weibull distribution based on progressive type-II censored competing risks data with binomial removals," Computational Statistics, Springer, vol. 34(1), pages 233-252, March.
    3. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    4. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    5. Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
    6. Emami, Hadi, 2015. "Influence diagnostic in ridge semiparametric models," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 106-113.
    7. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    8. Marco Capaldo & Antonio Di Crescenzo & Alessandra Meoli, 2024. "Cumulative information generating function and generalized Gini functions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(7), pages 775-803, October.
    9. Georgia Zournatzidou & Ioannis Mallidis & Dimitrios Farazakis & Christos Floros, 2024. "Enhancing Bitcoin Price Volatility Estimator Predictions: A Four-Step Methodological Approach Utilizing Elastic Net Regression," Mathematics, MDPI, vol. 12(9), pages 1-15, May.
    10. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    11. U. H. Salemi & S. Rezaei & Y. Si & S. Nadarajah, 2018. "On Optimal Progressive Censoring Schemes for Normal Distribution," Annals of Data Science, Springer, vol. 5(4), pages 637-658, December.
    12. Hossein Pasha-Zanoosi, 2024. "Estimation of multicomponent stress-strength reliability based on a bivariate Topp-Leone distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 570-602, June.
    13. Muqrin A. Almuqrin & Mukhtar M. Salah & Essam A. Ahmed, 2022. "Statistical Inference for Competing Risks Model with Adaptive Progressively Type-II Censored Gompertz Life Data Using Industrial and Medical Applications," Mathematics, MDPI, vol. 10(22), pages 1-38, November.
    14. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    15. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    16. M. Taavoni & M. Arashi, 2021. "Kernel estimation in semiparametric mixed effect longitudinal modeling," Statistical Papers, Springer, vol. 62(3), pages 1095-1116, June.
    17. Chien-Chia L. Huang & Yow-Jen Jou & Hsun-Jung Cho, 2017. "Difference-based matrix perturbation method for semi-parametric regression with multicollinearity," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2161-2171, September.
    18. Zhang, Fode & Shi, Yimin, 2016. "Geometry of exponential family with competing risks and censored data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 234-245.
    19. Mehdi Jabbari Nooghabi, 2016. "Estimation of the Lomax Distribution in the Presence of Outliers," Annals of Data Science, Springer, vol. 3(4), pages 385-399, December.
    20. Mazen Nassar & Refah Alotaibi & Chunfang Zhang, 2022. "Estimation of Reliability Indices for Alpha Power Exponential Distribution Based on Progressively Censored Competing Risks Data," Mathematics, MDPI, vol. 10(13), pages 1-25, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:10:p:1599-:d:1398094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.