IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p1954-d439927.html
   My bibliography  Save this article

Some New Facts about the Unit-Rayleigh Distribution with Applications

Author

Listed:
  • Rashad A. R. Bantan

    (Department of Marine Geology, Faculty of Marine Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Christophe Chesneau

    (LMNO, Université de Caen Normandie, Campus II, Science 3, 14032 Caen, France)

  • Farrukh Jamal

    (Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan)

  • Mohammed Elgarhy

    (The Higher Institute of Commercial Sciences, Al mahalla Al kubra, Algarbia 31951, Egypt)

  • Muhammad H. Tahir

    (Department of Statistics, The Islamia University of Bahawalpur, Punjab 63100, Pakistan)

  • Aqib Ali

    (Department of Computer Science and IT, GLIM Institute of Modern Studies Bahawalpur, Bahawalpur, Punjab 63100, Pakistan)

  • Muhammad Zubair

    (Department of Computer Science and IT, GLIM Institute of Modern Studies Bahawalpur, Bahawalpur, Punjab 63100, Pakistan)

  • Sania Anam

    (Department of Computer Science, Govt Degree College for Women Ahmadpur East, Bahawalpur 63350, Pakistan)

Abstract

The unit-Rayleigh distribution is a one-parameter distribution with support on the unit interval. It is defined as the so-called unit-Weibull distribution with a shape parameter equal to two. As a particular case among others, it seems that it has not been given special attention. This paper shows that the unit-Rayleigh distribution is much more interesting than it might at first glance, revealing closed-form expressions of important functions, and new desirable properties for application purposes. More precisely, on the theoretical level, we contribute to the following aspects: (i) we bring new characteristics on the form analysis of its main probabilistic and reliability functions, and show that the possible mode has a simple analytical expression, (ii) we prove new stochastic ordering results, (iii) we expose closed-form expressions of the incomplete and probability weighted moments at the basis of various probability functions and measures, (iv) we investigate distributional properties of the order statistics, (v) we show that the reliability coefficient can have a simple ratio expression, (vi) we provide a tractable expansion for the Tsallis entropy and (vii) we propose some bivariate unit-Rayleigh distributions. On a practical level, we show that the maximum likelihood estimate has a quite simple closed-form. Three data sets are analyzed and adjusted, revealing that the unit-Rayleigh distribution can be a better alternative to standard one-parameter unit distributions, such as the one-parameter Kumaraswamy, Topp–Leone, one-parameter beta, power and transmuted distributions.

Suggested Citation

  • Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Muhammad H. Tahir & Aqib Ali & Muhammad Zubair & Sania Anam, 2020. "Some New Facts about the Unit-Rayleigh Distribution with Applications," Mathematics, MDPI, vol. 8(11), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1954-:d:439927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/1954/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/1954/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josmar Mazucheli & André Felipe Menezes & Sanku Dey, 2019. "Unit-Gompertz Distribution with Applications," Statistica, Department of Statistics, University of Bologna, vol. 79(1), pages 25-43.
    2. Pedro Rafael D Marinho & Rodrigo B Silva & Marcelo Bourguignon & Gauss M Cordeiro & Saralees Nadarajah, 2019. "AdequacyModel: An R package for probability distributions and general purpose optimization," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-30, August.
    3. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    4. J. Mazucheli & A. F. B. Menezes & L. B. Fernandes & R. P. de Oliveira & M. E. Ghitany, 2020. "The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(6), pages 954-974, April.
    5. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    6. M. E. Ghitany & J. Mazucheli & A. F. B. Menezes & F. Alqallaf, 2019. "The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(14), pages 3423-3438, July.
    7. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    8. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    2. Josmar Mazucheli & Bruna Alves & Mustafa Ç. Korkmaz & Víctor Leiva, 2022. "Vasicek Quantile and Mean Regression Models for Bounded Data: New Formulation, Mathematical Derivations, and Numerical Applications," Mathematics, MDPI, vol. 10(9), pages 1-23, April.
    3. Lucio Masserini & Matilde Bini & Monica Pratesi, 2017. "Effectiveness of non-selective evaluation test scores for predicting first-year performance in university career: a zero-inflated beta regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 693-708, March.
    4. Jay Verkuilen & Michael Smithson, 2012. "Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution," Journal of Educational and Behavioral Statistics, , vol. 37(1), pages 82-113, February.
    5. Sher B. Chhetri & Alfred A. Akinsete & Gokarna Aryal & Hongwei Long, 2017. "The Kumaraswamy transmuted Pareto distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-24, December.
    6. Muhammad Ahsan ul Haq & Sharqa Hashmi & Khaoula Aidi & Pedro Luiz Ramos & Francisco Louzada, 2023. "Unit Modified Burr-III Distribution: Estimation, Characterizations and Validation Test," Annals of Data Science, Springer, vol. 10(2), pages 415-440, April.
    7. Patrícia L. Espinheira & Alisson Oliveira Silva, 2020. "Residual and influence analysis to a general class of simplex regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 523-552, June.
    8. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    9. Rashad A. R. Bantan & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "On a New Result on the Ratio Exponentiated General Family of Distributions with Applications," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    10. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    11. Aknouche, Abdelhakim & Dimitrakopoulos, Stefanos, 2021. "Autoregressive conditional proportion: A multiplicative-error model for (0,1)-valued time series," MPRA Paper 110954, University Library of Munich, Germany, revised 06 Dec 2021.
    12. Ricardo Rasmussen Petterle & Wagner Hugo Bonat & Cassius Tadeu Scarpin, 2019. "Quasi-beta Longitudinal Regression Model Applied to Water Quality Index Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 346-368, June.
    13. Rashad A. R. Bantan & Christophe Chesneau & Farrukh Jamal & Mohammed Elgarhy & Waleed Almutiry & Amani Abdullah Alahmadi, 2021. "Study of a Modified Kumaraswamy Distribution," Mathematics, MDPI, vol. 9(21), pages 1-26, November.
    14. Diego I. Gallardo & Marcelo Bourguignon & Yolanda M. Gómez & Christian Caamaño-Carrillo & Osvaldo Venegas, 2022. "Parametric Quantile Regression Models for Fitting Double Bounded Response with Application to COVID-19 Mortality Rate Data," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    15. Rodrigues, Antonio Carlos & Martins, Ricardo Silveira & Wanke, Peter Fernandes & Siegler, Janaina, 2018. "Efficiency of specialized 3PL providers in an emerging economy," International Journal of Production Economics, Elsevier, vol. 205(C), pages 163-178.
    16. Abdelhakim Aknouche & Stefanos Dimitrakopoulos, 2023. "Autoregressive conditional proportion: A multiplicative‐error model for (0,1)‐valued time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 393-417, July.
    17. Matthias Schmid & Florian Wickler & Kelly O Maloney & Richard Mitchell & Nora Fenske & Andreas Mayr, 2013. "Boosted Beta Regression," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    18. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    19. Paulus, Anne & Hagemann, Nina & Baaken, Marieke C. & Roilo, Stephanie & Alarcón-Segura, Viviana & Cord, Anna F. & Beckmann, Michael, 2022. "Landscape context and farm characteristics are key to farmers' adoption of agri-environmental schemes," Land Use Policy, Elsevier, vol. 121(C).
    20. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:1954-:d:439927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.