IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p301-d1320816.html
   My bibliography  Save this article

ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems

Author

Listed:
  • Xiaoyu Shi

    (School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
    These authors contributed equally to this work.)

  • Hanyu Zhang

    (School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
    These authors contributed equally to this work.)

  • Guanjie Wang

    (School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China)

Abstract

Markov chain Monte Carlo (MCMC) stands out as an effective method for tackling Bayesian inverse problems. However, when dealing with computationally expensive forward models and high-dimensional parameter spaces, the challenge of repeated sampling becomes pronounced. A common strategy to address this challenge is to construct an inexpensive surrogate of the forward model, which cuts the computational cost of individual samples. While the Gaussian process (GP) is widely used as a surrogate modeling strategy, its applicability can be limited when dealing with high-dimensional input or output spaces. This paper presents a novel approach that combines the analysis of variance (ANOVA) decomposition method with Gaussian process regression to handle high-dimensional Bayesian inverse problems. Initially, the ANOVA method is employed to reduce the dimension of the parameter space, which decomposes the original high-dimensional problem into several low-dimensional sub-problems. Subsequently, principal component analysis (PCA) is utilized to reduce the dimension of the output space on each sub-problem. Finally, a Gaussian process model with a low-dimensional input and output is constructed for each sub-problem. In addition to this methodology, an adaptive ANOVA-GP-MCMC algorithm is proposed, which further enhances the adaptability and efficiency of the method in the Bayesian inversion setting. The accuracy and computational efficiency of the proposed approach are validated through numerical experiments. This innovative integration of ANOVA and Gaussian processes provides a promising solution to address challenges associated with high-dimensional parameter spaces and computationally expensive forward models in Bayesian inference.

Suggested Citation

  • Xiaoyu Shi & Hanyu Zhang & Guanjie Wang, 2024. "ANOVA-GP Modeling for High-Dimensional Bayesian Inverse Problems," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:301-:d:1320816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/301/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/301/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jinglai, 2015. "A note on the Karhunen–Loève expansions for infinite-dimensional Bayesian inverse problems," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 1-4.
    2. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    2. Kowal, Karol, 2022. "Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    4. Jingjing Xu & Qiaobin Yan & Yanhu Pei & Zhifeng Liu & Qiang Cheng & Hongyan Chu & Tao Zhang, 2024. "A Statistical Evaluation Method Based on Fuzzy Failure Data for Multi-State Equipment Reliability," Mathematics, MDPI, vol. 12(9), pages 1-22, May.
    5. Wang, Jiaolong & Zhang, Fode & Zhang, Jianchuan & Liu, Wen & Zhou, Kuang, 2023. "A flexible RUL prediction method based on poly-cell LSTM with applications to lithium battery data," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    7. Jin, Yuxue & Geng, Jie & Lv, Chuan & Chi, Ying & Zhao, Tingdi, 2023. "A methodology for equipment condition simulation and maintenance threshold optimization oriented to the influence of multiple events," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    9. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    11. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    13. Ding, Wanmeng & Li, Jimeng & Mao, Weilin & Meng, Zong & Shen, Zhongjie, 2023. "Rolling bearing remaining useful life prediction based on dilated causal convolutional DenseNet and an exponential model," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    16. Wang, Han & Liao, Haitao & Ma, Xiaobing, 2022. "Stochastic Multi-phase Modeling and Health Assessment for Systems Based on Degradation Branching Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Huda M. Alshanbari & Zubair Ahmad & Hazem Al-Mofleh & Clement Boateng Ampadu & Saima K. Khosa, 2023. "A New Probabilistic Approach: Estimation and Monte Carlo Simulation with Applications to Time-to-Event Data," Mathematics, MDPI, vol. 11(7), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:301-:d:1320816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.