IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i10p1635-1643.html
   My bibliography  Save this article

Machine learning for quantitative finance: fast derivative pricing, hedging and fitting

Author

Listed:
  • Jan De Spiegeleer
  • Dilip B. Madan
  • Sofie Reyners
  • Wim Schoutens

Abstract

In this paper, we show how we can deploy machine learning techniques in the context of traditional quant problems. We illustrate that for many classical problems, we can arrive at speed-ups of several orders of magnitude by deploying machine learning techniques based on Gaussian process regression. The price we have to pay for this extra speed is some loss of accuracy. However, we show that this reduced accuracy is often well within reasonable limits and hence very acceptable from a practical point of view. The concrete examples concern fitting and estimation. In the fitting context, we fit sophisticated Greek profiles and summarize implied volatility surfaces. In the estimation context, we reduce computation times for the calculation of vanilla option values under advanced models, the pricing of American options and the pricing of exotic options under models beyond the Black–Scholes setting.

Suggested Citation

  • Jan De Spiegeleer & Dilip B. Madan & Sofie Reyners & Wim Schoutens, 2018. "Machine learning for quantitative finance: fast derivative pricing, hedging and fitting," Quantitative Finance, Taylor & Francis Journals, vol. 18(10), pages 1635-1643, October.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:10:p:1635-1643
    DOI: 10.1080/14697688.2018.1495335
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2018.1495335
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2018.1495335?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:10:p:1635-1643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.