Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
- Vijay Desai & Rakesh Bharati, 1998. "A comparison of linear regression and neural network methods for predicting excess returns on large stocks," Annals of Operations Research, Springer, vol. 78(0), pages 127-163, January.
- Anderson, Nicola & Noss, Joseph, 2013. "Financial Stability Paper No 23: The Fractal Market Hypothesis and its implications for the stability of financial markets," Bank of England Financial Stability Papers 23, Bank of England.
- Cheng, Pao L & Deets, M King, 1971. "Portfolio Returns and the Random Walk Theory," Journal of Finance, American Finance Association, vol. 26(1), pages 11-30, March.
- Sanchita Bansal & Isha Garg & Gagan Deep Sharma, 2019. "Social Entrepreneurship as a Path for Social Change and Driver of Sustainable Development: A Systematic Review and Research Agenda," Sustainability, MDPI, vol. 11(4), pages 1-28, February.
- M. Rusydi & Sardar M. N. Islam, 2007. "Market Models and Applications," Palgrave Macmillan Books, in: Quantitative Exchange Rate Economics in Developing Countries, chapter 4, pages 45-62, Palgrave Macmillan.
- Stelios Bekiros, 2007. "A neurofuzzy model for stock market trading," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 53-57.
- Fouad Ben Abdelaziz & Mohamed Amer & Hazim El-Baz, 2014. "An Epsilon constraint method for selecting Indicators for use in Neural Networks for stock market forecasting," Post-Print hal-01223453, HAL.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehmet Sahiner & David G. McMillan & Dimos Kambouroudis, 2023. "Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 723-762, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barbara Bradač Hojnik & Katja Crnogaj, 2020. "Social Impact, Innovations, and Market Activity of Social Enterprises: Comparison of European Countries," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
- Geri Skenderi & Christian Joppi & Matteo Denitto & Marco Cristani, 2024. "Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1982-1997, September.
- Jaydip Sen & Sidra Mehtab, 2021. "Design and Analysis of Robust Deep Learning Models for Stock Price Prediction," Papers 2106.09664, arXiv.org.
- Yardley, Ben, 2020. "The Effects of Donald Trump’s Tweets on The Stock Exchange," MPRA Paper 102578, University Library of Munich, Germany.
- Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010.
"Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data,"
Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2009. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," CREATES Research Papers 2009-45, Department of Economics and Business Economics, Aarhus University.
- Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
- Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
- Monir Maruf Mohammad Sirajum & Geberemeskel Alula Nerea, 2023. "Social Entrepreneurship and Social Innovation in the Entrepreneurial Ecosystem," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 822-838, July.
- Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
- Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
- Caperna, Giulio & Colagrossi, Marco & Geraci, Andrea & Mazzarella, Gianluca, 2022. "A babel of web-searches: Googling unemployment during the pandemic," Labour Economics, Elsevier, vol. 74(C).
- Behera, Sarthak & Sadana, Divya, 2022. "The Impact of Visibility on School Athletic Finances: An Empirical Analysis using Google Trends," MPRA Paper 114818, University Library of Munich, Germany.
- Chaiyuth Padungsaksawasdi & Sirimon Treepongkaruna & Robert Brooks, 2019. "Investor Attention and Stock Market Activities: New Evidence from Panel Data," IJFS, MDPI, vol. 7(2), pages 1-19, June.
- Zhang, Tonghui & Yuan, Ying & Wu, Xi, 2020. "Is microblogging data reflected in stock market volatility? Evidence from Sina Weibo," Finance Research Letters, Elsevier, vol. 32(C).
- Paravee Maneejuk & Woraphon Yamaka, 2019. "Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends," Mathematics, MDPI, vol. 7(11), pages 1-29, November.
- Hyun Jin & Darren Frechette, 2004. "A new t-test for the R/S analysis and long memory in agricultural commodity prices," Applied Economics Letters, Taylor & Francis Journals, vol. 11(11), pages 661-667.
- Hasanzadeh, Samira & Alishahi, Modjgan, 2020. "COVID-19 Pounds: Quarantine and Weight Gain," MPRA Paper 103074, University Library of Munich, Germany.
- Han Wang & Geng Peng & Benfu Lv, 2018. "Effect of Retail Investor Attention on Chinas A-Share Market Under a Strengthening Financial Regulatory Policy," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(10), pages 1274-1297, October.
- Axelsson, Birger & Song, Han-Suck, 2023. "Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model," Working Paper Series 23/10, Royal Institute of Technology, Department of Real Estate and Construction Management & Banking and Finance, revised 14 Nov 2023.
- Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Abdullahi Osman Ali & Jama Mohamed, 2022. "The optimal forecast model for consumer price index of Puntland State, Somalia," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4549-4572, December.
More about this item
Keywords
artificial intelligence; neural networks; training algorithm; NVivo; stock market forecast;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:526-:d:672223. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.