IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i6p1982-1997.html
   My bibliography  Save this article

Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends

Author

Listed:
  • Geri Skenderi
  • Christian Joppi
  • Matteo Denitto
  • Marco Cristani

Abstract

New fashion product sales forecasting is a challenging problem that involves many business dynamics and cannot be solved by classical forecasting approaches. In this paper, we investigate the effectiveness of systematically probing exogenous knowledge in the form of Google Trends time series and combining it with multi‐modal information related to a brand‐new fashion item, in order to effectively forecast its sales despite the lack of past data. In particular, we propose a neural network‐based approach, where an encoder learns a representation of the exogenous time series, while the decoder forecasts the sales based on the Google Trends encoding and the available visual and metadata information. Our model works in a non‐autoregressive manner, avoiding the compounding effect of large first‐step errors. As a second contribution, we present VISUELLE, a publicly available dataset for the task of new fashion product sales forecasting, containing multimodal information for 5,577 real, new products sold between 2016 and 2019 from Nunalie, an Italian fast‐fashion company. The dataset is equipped with images of products, metadata, related sales, and associated Google Trends. We use VISUELLE to compare our approach against state‐of‐the‐art alternatives and several baselines, showing that our neural network‐based approach is the most accurate in terms of both percentage and absolute error. It is worth noting that the addition of exogenous knowledge boosts the forecasting accuracy by 1.5% in terms of Weighted Absolute Percentage Error (WAPE), revealing the importance of exploiting informative external information. The code and dataset are both available online (at https://github.com/HumaticsLAB/GTM-Transformer).

Suggested Citation

  • Geri Skenderi & Christian Joppi & Matteo Denitto & Marco Cristani, 2024. "Well googled is half done: Multimodal forecasting of new fashion product sales with image‐based google trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1982-1997, September.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1982-1997
    DOI: 10.1002/for.3104
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3104
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hamid, Alain & Heiden, Moritz, 2015. "Forecasting volatility with empirical similarity and Google Trends," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 62-81.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Levent Bulut, 2018. "Google Trends and the forecasting performance of exchange rate models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(3), pages 303-315, April.
    4. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    5. Bangwayo-Skeete, Prosper F. & Skeete, Ryan W., 2015. "Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach," Tourism Management, Elsevier, vol. 46(C), pages 454-464.
    6. Aldrich, J., 1995. "Correlations genuine and spurious in Pearson and Yule," Discussion Paper Series In Economics And Econometrics 9502, Economics Division, School of Social Sciences, University of Southampton.
    7. Chris Hand & Guy Judge, 2012. "Searching for the picture: forecasting UK cinema admissions using Google Trends data," Applied Economics Letters, Taylor & Francis Journals, vol. 19(11), pages 1051-1055, July.
    8. Karen L. Donohue, 2000. "Efficient Supply Contracts for Fashion Goods with Forecast Updating and Two Production Modes," Management Science, INFORMS, vol. 46(11), pages 1397-1411, November.
    9. Marcelo C. Medeiros & Henrique F. Pires, 2021. "The Proper Use of Google Trends in Forecasting Models," Papers 2104.03065, arXiv.org, revised Apr 2021.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanuel Sirimal Silva & Hossein Hassani & Dag Øivind Madsen & Liz Gee, 2019. "Googling Fashion: Forecasting Fashion Consumer Behaviour Using Google Trends," Social Sciences, MDPI, vol. 8(4), pages 1-23, April.
    2. Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
    3. Stephen L. France & Yuying Shi, 2017. "Aggregating Google Trends: Multivariate Testing and Analysis," Papers 1712.03152, arXiv.org, revised Mar 2018.
    4. Behera, Sarthak & Sadana, Divya, 2022. "The Impact of Visibility on School Athletic Finances: An Empirical Analysis using Google Trends," MPRA Paper 114818, University Library of Munich, Germany.
    5. Blazquez, Desamparados & Domenech, Josep, 2018. "Big Data sources and methods for social and economic analyses," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 99-113.
    6. Mohammad Reza Farzanegan & Mehdi Feizi & Saeed Malek Sadati, 2020. "Google It Up! A Google Trends-based analysis of COVID-19 outbreak in Iran," MAGKS Papers on Economics 202017, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    7. Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
    8. France, Stephen L. & Shi, Yuying & Kazandjian, Brett, 2021. "Web Trends: A valuable tool for business research," Journal of Business Research, Elsevier, vol. 132(C), pages 666-679.
    9. Lyócsa, Štefan & Baumöhl, Eduard & Výrost, Tomáš, 2022. "YOLO trading: Riding with the herd during the GameStop episode," Finance Research Letters, Elsevier, vol. 46(PA).
    10. Palma Lampreia Dos Santos, Maria José, 2018. "Nowcasting and forecasting aquaponics by Google Trends in European countries," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 178-185.
    11. Di Wu & Zhenning Xu & Seung Bach, 2023. "Using Google Trends to predict and forecast avocado sales," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(4), pages 629-641, December.
    12. Valadkhani, Abbas & Smyth, Russell, 2017. "How do daily changes in oil prices affect US monthly industrial output?," Energy Economics, Elsevier, vol. 67(C), pages 83-90.
    13. Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    16. Cebrián, Eduardo & Domenech, Josep, 2024. "Addressing Google Trends inconsistencies," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    17. Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
    18. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    19. Qadan, Mahmoud & Zoua’bi, Maher, 2019. "Financial attention and the demand for information," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 82(C).
    20. Correa, Alexander, 2021. "Prediciendo la llegada de turistas a Colombia a partir de los criterios de Google Trends," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue No. 95, pages 105-134, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:6:p:1982-1997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.