IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v14y2007i1p53-57.html
   My bibliography  Save this article

A neurofuzzy model for stock market trading

Author

Listed:
  • Stelios Bekiros

Abstract

This study investigates the forecasting ability of trading strategies based on neurofuzzy models, recurrent neural networks and linear regression models. The performance of the trading strategies was considered upon the prediction of the direction-of-change of the market in case of Nikkei 255 Index returns. The results demonstrate that the profitability of the trading rule based on the neurofuzzy model is consistently higher to that of the other models as well as of a buy and hold strategy during bear market periods.

Suggested Citation

  • Stelios Bekiros, 2007. "A neurofuzzy model for stock market trading," Applied Economics Letters, Taylor & Francis Journals, vol. 14(1), pages 53-57.
  • Handle: RePEc:taf:apeclt:v:14:y:2007:i:1:p:53-57
    DOI: 10.1080/13504850500425717
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850500425717&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850500425717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    2. Allen, Helen & Taylor, Mark P, 1990. "Charts, Noise and Fundamentals in the London Foreign Exchange Market," Economic Journal, Royal Economic Society, vol. 100(400), pages 49-59, Supplemen.
    3. Joseph Plasmans & William Verkooijen & Hennie Daniels, 1998. "Estimating structural exchange rate models by artificial neural networks," Applied Financial Economics, Taylor & Francis Journals, vol. 8(5), pages 541-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ritika Chopra & Gagan Deep Sharma, 2021. "Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda," JRFM, MDPI, vol. 14(11), pages 1-34, November.
    2. Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
    3. Aurthur Vimalachandran Thomas Jayachandran, 2022. "The financial crash of 2020 and the retail trader’s boon: a correlation between sentiment and technical analysis," SN Business & Economics, Springer, vol. 2(6), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    2. Zheng, Yao & Osmer, Eric & Zhang, Ruiyi, 2018. "Sentiment hedging: How hedge funds adjust their exposure to market sentiment," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 147-160.
    3. Blake, David & Caulfield, Tristan & Ioannidis, Christos & Tonks, Ian, 2014. "Improved inference in the evaluation of mutual fund performance using panel bootstrap methods," Journal of Econometrics, Elsevier, vol. 183(2), pages 202-210.
    4. Bali, Turan G. & Brown, Stephen J. & Caglayan, Mustafa O., 2019. "Upside potential of hedge funds as a predictor of future performance," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 212-229.
    5. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    6. Kee-Hong Bae & Junesuh Yi, 2008. "The Impact of the Short-Short Rule Repeal on the Timing Ability of Mutual Funds," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 35(7-8), pages 969-997.
    7. François-Éric Racicot & Raymond Théoret, 2022. "Tracking market and non-traditional sources of risks in procyclical and countercyclical hedge fund strategies under extreme scenarios: a nonlinear VAR approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    8. Sanaullah & Muhammad Shahbaz Khan & Dr. Amna Noor & Salleh Khan, 2021. "An Investigation of Market Timing Ability of Mutual Fund Managers in Pakistan," iRASD Journal of Management, International Research Alliance for Sustainable Development (iRASD), vol. 3(1), pages 56-68, june.
    9. repec:hum:wpaper:sfb649dp2007-042 is not listed on IDEAS
    10. Zheng, Yao & Osmer, Eric & Zu, Dingding, 2024. "Timing sentiment with style: Evidence from mutual funds," Journal of Banking & Finance, Elsevier, vol. 164(C).
    11. Frenkel, Michael & Pierdzioch, Christian & Stadtmann, Georg, 2006. "The transparency of the ECB policy: What can we learn from its foreign exchange market interventions?," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 141-156, February.
    12. S. Pavithra & Parthajit Kayal, 2023. "A Study of Investment Style Timing of Mutual Funds in India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(1), pages 49-72, March.
    13. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    14. Juan José Echavarría & Diego Vásquez & Mauricio Villamizar, 2008. "Expectativas, tasa de interés y tasa de cambio: paridad cubierta y no cubierta en Colombia, 2000-2007," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 26(56), pages 150-203, June.
    15. Rania HENTATI & Jean-Luc PRIGENT, 2010. "Structured Portfolio Analysis under SharpeOmega Ratio," EcoMod2010 259600073, EcoMod.
    16. Leila Hedhili Zaier & Khaled Mokni & Ahdi Noomen Ajmi, 2024. "Causality relationships between climate policy uncertainty, renewable energy stocks, and oil prices: a mixed-frequency causality analysis," Future Business Journal, Springer, vol. 10(1), pages 1-11, December.
    17. Roberto Casarin & Andrea Piva & Loriana Pelizzon, 2008. "Italian Equity Funds: Efficiency and Performance Persistence," The IUP Journal of Financial Economics, IUP Publications, vol. 0(1), pages 7-28, March.
    18. Georges Prat & Remzi Uctum, 2015. "Expectation formation in the foreign exchange market: a time-varying heterogeneity approach using survey data," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3673-3695, July.
    19. Dass, Nishant & Nanda, Vikram & Wang, Qinghai, 2013. "Allocation of decision rights and the investment strategy of mutual funds," Journal of Financial Economics, Elsevier, vol. 110(1), pages 254-277.
    20. Garcia, Philip & Irwin, Scott H. & Leuthold, Raymond M. & Yang, Li, 1997. "The value of public information in commodity futures markets," Journal of Economic Behavior & Organization, Elsevier, vol. 32(4), pages 559-570, April.
    21. Tiziana Assenza & William A. Brock & Cars H. Hommes, 2013. "Animal Spirits, Heterogeneous Expectations and the Emergence of Booms and Busts," Tinbergen Institute Discussion Papers 13-205/II, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:14:y:2007:i:1:p:53-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.