Do artificial neural networks provide improved volatility forecasts: Evidence from Asian markets
Author
Abstract
Suggested Citation
DOI: 10.1007/s12197-023-09629-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Giot, Pierre & Laurent, Sebastien, 2004.
"Modelling daily Value-at-Risk using realized volatility and ARCH type models,"
Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
- Giot, P. & Laurent, S.F.J.A., 2001. "Modelling daily value-at-risk using realized volatility and arch type models," Research Memorandum 026, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- GIOT, Pierre & LAURENT, Sébastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," LIDAM Reprints CORE 1708, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
- Rui Luo & Weinan Zhang & Xiaojun Xu & Jun Wang, 2017. "A Neural Stochastic Volatility Model," Papers 1712.00504, arXiv.org, revised Dec 2018.
- Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2020.
"The predictability of stock market volatility in emerging economies: Relative roles of local, regional, and global business cycles,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 957-965, September.
- Elie Bouri & Riza Demirer & Rangan Gupta & Xiaojin Sun, 2019. "The Predictability of Stock Market Volatility in Emerging Economies: Relative Roles of Local, Regional and Global Business Cycles," Working Papers 201938, University of Pretoria, Department of Economics.
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016.
"Model risk of risk models,"
Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
- Jón Daníelsson & Kevin James & Marcela Valenzuela & Ilknur Zer, 2014. "Model Risk of Risk Models," Finance and Economics Discussion Series 2014-34, Board of Governors of the Federal Reserve System (U.S.).
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," LSE Research Online Documents on Economics 66365, London School of Economics and Political Science, LSE Library.
- Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2014. "Model risk of risk models," LSE Research Online Documents on Economics 59296, London School of Economics and Political Science, LSE Library.
- Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
- Georgios Sermpinis & Andreas Karathanasopoulos & Rafael Rosillo & David Fuente, 2021. "Neural networks in financial trading," Annals of Operations Research, Springer, vol. 297(1), pages 293-308, February.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521770415, November.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, November.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
- O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
- S. Aarif Ahamed & Chandrasekar Ravi, 2021. "Study of Swarm Intelligence Algorithms for Optimizing Deep Neural Network for Bitcoin Prediction," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 12(2), pages 22-38, April.
- Dovern, Jonas & Fritsche, Ulrich & Loungani, Prakash & Tamirisa, Natalia, 2015.
"Information rigidities: Comparing average and individual forecasts for a large international panel,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 144-154.
- Jonas Dovern & Ulrich Fritsche & Prakash Loungani & Natalia Tamirisa, 2014. "Information Rigidities: Comparing Average And Individual Forecasts For A Large International Panel," Working Papers 2014-001, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Jonas Dovern & Mr. Ulrich Fritsche & Mr. Prakash Loungani & Ms. Natalia T. Tamirisa, 2014. "Information Rigidities: Comparing Average and Individual Forecasts for a Large International Panel," IMF Working Papers 2014/031, International Monetary Fund.
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- George S. Atsalakis & Eftychios E. Protopapadakis & Kimon P. Valavanis, 2016. "Stock trend forecasting in turbulent market periods using neuro-fuzzy systems," Operational Research, Springer, vol. 16(2), pages 245-269, July.
- Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.
- Yang, Rongjun & Yu, Lin & Zhao, Yuanjun & Yu, Hongxin & Xu, Guiping & Wu, Yiting & Liu, Zhengkai, 2020. "Big data analytics for financial Market volatility forecast based on support vector machine," International Journal of Information Management, Elsevier, vol. 50(C), pages 452-462.
- Alon Brav & J.B. Heaton, 2002. "Competing Theories of Financial Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 575-606, March.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Ritika Chopra & Gagan Deep Sharma, 2021. "Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda," JRFM, MDPI, vol. 14(11), pages 1-34, November.
- O. B. Sezer & M. Ozbayoglu & E. Dogdu, 2017. "An Artificial Neural Network-based Stock Trading System Using Technical Analysis and Big Data Framework," Papers 1712.09592, arXiv.org.
- Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Charles JP Chen & Yuan Ding & Chansog (Francis) Kim, 2010. "High-level politically connected firms, corruption, and analyst forecast accuracy around the world," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 41(9), pages 1505-1524, December.
- Filippo Curti & Ibrahim Ergen & Minh Le & Marco Migueis & Rob T. Stewart, 2016. "Benchmarking Operational Risk Models," Finance and Economics Discussion Series 2016-070, Board of Governors of the Federal Reserve System (U.S.).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- d’Addona, Stefano & Khanom, Najrin, 2022. "Estimating tail-risk using semiparametric conditional variance with an application to meme stocks," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 241-260.
- Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
- Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
- Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
- Stavroyiannis, S. & Makris, I. & Nikolaidis, V. & Zarangas, L., 2012. "Econometric modeling and value-at-risk using the Pearson type-IV distribution," International Review of Financial Analysis, Elsevier, vol. 22(C), pages 10-17.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
- Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
- Chao Wang & Richard Gerlach, 2019. "Semi-parametric Realized Nonlinear Conditional Autoregressive Expectile and Expected Shortfall," Papers 1906.09961, arXiv.org.
- Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
- Chao Wang & Qian Chen & Richard Gerlach, 2017. "Bayesian Realized-GARCH Models for Financial Tail Risk Forecasting Incorporating Two-sided Weibull Distribution," Papers 1707.03715, arXiv.org.
- Khoo, Zhi De & Ng, Kok Haur & Koh, You Beng & Ng, Kooi Huat, 2024. "Forecasting volatility of stock indices: Improved GARCH-type models through combined weighted volatility measure and weighted volatility indicators," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Zhimin Wu & Guanghui Cai, 2024. "Can intraday data improve the joint estimation and prediction of risk measures? Evidence from a variety of realized measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1956-1974, September.
- Degiannakis, Stavros & Potamia, Artemis, 2017.
"Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data,"
International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
- Degiannakis, Stavros & Potamia, Artemis, 2016. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: inter-day versus intra-day data," MPRA Paper 74670, University Library of Munich, Germany.
- T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
- Yusui Tang & Feng Ma & Yaojie Zhang & Yu Wei, 2022. "Forecasting the oil price realized volatility: A multivariate heterogeneous autoregressive model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4770-4783, October.
- Charles, Amélie & Darné, Olivier, 2014.
"Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013,"
Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
- Amélie Charles & Olivier Darné, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Post-Print hal-01122507, HAL.
- Rangika Peiris & Chao Wang & Richard Gerlach & Minh-Ngoc Tran, 2024. "Semi-parametric financial risk forecasting incorporating multiple realized measures," Papers 2402.09985, arXiv.org, revised Dec 2024.
- Assaf, Ata, 2015. "Value-at-Risk analysis in the MENA equity markets: Fat tails and conditional asymmetries in return distributions," Journal of Multinational Financial Management, Elsevier, vol. 29(C), pages 30-45.
- Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
More about this item
Keywords
Volatility; Forecasting; Neural Networks; Machine Learning; VaR; ES;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jecfin:v:47:y:2023:i:3:d:10.1007_s12197-023-09629-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.