IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i12p7155-d836175.html
   My bibliography  Save this article

Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China

Author

Listed:
  • Lili Guo

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Sihang Guo

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Mengqian Tang

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

  • Mengying Su

    (College of Economics, Guangxi Minzu University, Nanning 530006, China)

  • Houjian Li

    (College of Economics, Sichuan Agricultural University, Chengdu 611130, China)

Abstract

In the past 15 years, China has emitted the most carbon dioxide globally. The overuse of chemical fertilizer is an essential reason for agricultural carbon emissions. In recent years, China has paid more and more attention to financial support for agriculture. Therefore, understanding the relationship between chemical fertilizer use, financial support for agriculture, and agricultural carbon emissions will benefit sustainable agricultural production. To achieve the goal of our research, we selected the panel data of 30 provinces (cities) in China from 2000 to 2019 and employed a series of methods in this research. The results demonstrate that: the effect of chemical fertilizer consumption on agricultural carbon emissions is positive. Moreover, financial support for agriculture has a significantly positive impact on reducing carbon emissions from agricultural production. In addition, the results of causality tests testify to one−way causality from financial support for agriculture to carbon emissions from agricultural production, the bidirectional causal relationship between chemical fertilizer use and financial support for agriculture, and two−way causality between chemical fertilizer use and agricultural carbon emissions. Furthermore, the results of variance decomposition analysis represent that financial support for agriculture will significantly affect chemical fertilizer use and carbon emissions in the agricultural sector over the next decade. Finally, we provide several policy suggestions to promote low−carbon agricultural production based on the results of this study. The government should uphold the concept of sustainable agriculture, increase financial support for environmental−friendly agriculture, and encourage the research and use of cleaner agricultural production technologies and chemical fertilizer substitutes.

Suggested Citation

  • Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7155-:d:836175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/12/7155/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/12/7155/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baloch, Muhammad Awais & Danish, & Khan, Salah Ud-Din & Ulucak, Zübeyde Şentürk, 2020. "Poverty and vulnerability of environmental degradation in Sub-Saharan African countries: what causes what?," Structural Change and Economic Dynamics, Elsevier, vol. 54(C), pages 143-149.
    2. Shenggen Fan & Peter Hazell & Sukhadeo Thorat, 2000. "Government Spending, Growth and Poverty in Rural India," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 82(4), pages 1038-1051.
    3. Kaddour Hadri, 2000. "Testing for stationarity in heterogeneous panel data," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 148-161.
    4. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," Working Papers id:4387, eSocialSciences.
    5. James Vercammen, 2007. "Farm bankruptcy risk as a link between direct payments and agricultural investment," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(4), pages 479-500, December.
    6. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    7. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    8. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    9. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    10. Tang, Le & Sun, Shiyu, 2022. "Fiscal incentives, financial support for agriculture, and urban-rural inequality," International Review of Financial Analysis, Elsevier, vol. 80(C).
    11. Peter Pedroni, 2000. "Fully Modified OLS for Heterogeneous Cointegrated Panels," Department of Economics Working Papers 2000-03, Department of Economics, Williams College.
    12. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    13. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    14. Yi, Fujin & Sun, Dingqiang & Zhou, Yingheng, 2015. "Grain subsidy, liquidity constraints and food security—Impact of the grain subsidy program on the grain-sown areas in China," Food Policy, Elsevier, vol. 50(C), pages 114-124.
    15. Subrata Ghatak & Jalal Siddiki, 2001. "The use of the ARDL approach in estimating virtual exchange rates in India," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 573-583.
    16. Rada, Nicholas E. & Valdes, Constanza, 2012. "Policy, Technology, and Efficiency of Brazilian Agriculture," Economic Research Report 127498, United States Department of Agriculture, Economic Research Service.
    17. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    18. Lavan Mahadeva and Paul Robinson, 2004. "Unit Root Testing in a Central Bank," Handbooks, Centre for Central Banking Studies, Bank of England, number 22, April.
    19. Allen G Good & Perrin H Beatty, 2011. "Fertilizing Nature: A Tragedy of Excess in the Commons," PLOS Biology, Public Library of Science, vol. 9(8), pages 1-9, August.
    20. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    21. Alain de Janvry & Elisabeth Sadoulet, 2010. "Agricultural Growth and Poverty Reduction: Additional Evidence," The World Bank Research Observer, World Bank, vol. 25(1), pages 1-20, February.
    22. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    23. Dong, Feng & Li, Xiaohui & Long, Ruyin & Liu, Xiaoyan, 2013. "Regional carbon emission performance in China according to a stochastic frontier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 525-530.
    24. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    25. Carauta, Marcelo & Troost, Christian & Guzman-Bustamante, Ivan & Hampf, Anna & Libera, Affonso & Meurer, Katharina & Bönecke, Eric & Franko, Uwe & Ribeiro Rodrigues, Renato de Aragão & Berger, Thomas, 2021. "Climate-related land use policies in Brazil: How much has been achieved with economic incentives in agriculture?," Land Use Policy, Elsevier, vol. 109(C).
    26. James H. Stock & Mark W. Watson, 1989. "A Simple MLE of Cointegrating Vectors in Higher Order Integrated Systems," NBER Technical Working Papers 0083, National Bureau of Economic Research, Inc.
    27. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    2. Mengyao Xia & Di Zeng & Qi Huang & Xinjian Chen, 2022. "Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    3. Ting Wang & Jing Wu & Jianghua Liu, 2024. "Regional Differences, Dynamic Evolution, and Convergence of Global Agricultural Energy Efficiency," Agriculture, MDPI, vol. 14(8), pages 1-29, August.
    4. Xidong Zhang & Juan Zhang & Chengbo Yang, 2023. "Spatio-Temporal Evolution of Agricultural Carbon Emissions in China, 2000–2020," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Hanjin Li & Hu Tian & Xinyu Liu & Jiansheng You, 2024. "Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    6. Chao Hu & Jin Fan & Jian Chen, 2022. "Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    7. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    8. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    9. Bingbing Huang & Hui Kong & Jinhong Yu & Xiaoyou Zhang, 2022. "A Study on the Impact of Low-Carbon Technology Application in Agriculture on the Returns of Large-Scale Farmers," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    10. Quan Xiao & Yu Wang & Haojie Liao & Gang Han & Yunjie Liu, 2023. "The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: A Study Based on China’s Provinces," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    11. Decai Tang & Hui Zhong & Jingyi Zhang & Yongguang Dai & Valentina Boamah, 2022. "The Effect of Green Finance on the Ecological and Environmental Quality of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    12. Tingting Huang & Bin Xiong, 2022. "Space Comparison of Agricultural Green Growth in Agricultural Modernization: Scale and Quality," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
    13. Xiaogeng Niu & Meiyu Liu & Zhenxing Tian & Anguo Chen, 2022. "Research on the Impact of Agricultural Financial Support on Agricultural Carbon Compensation Rate," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    14. Zirong Lin & Hui Wang & Wei Li & Min Chen, 2023. "Impact of Green Finance on Carbon Emissions Based on a Two-Stage LMDI Decomposition Method," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    15. Shaolong Zeng & Qinyi Fu & Fazli Haleem & Yang Shen & Jiedong Zhang, 2023. "Carbon-Reduction, Green Finance, and High-Quality Economic Development: A Case of China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    16. Yang Qi & Mingyue Gao & Haoyu Wang & Huijie Ding & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does Marketization Promote High-Quality Agricultural Development in China?," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    17. Lin Zhang & Jinyan Chen & Faustino Dinis & Sha Wei & Chengzhi Cai, 2022. "Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    18. Fanghua Li & Wei Liang & Dungang Zang & Abbas Ali Chandio & Yinying Duan, 2022. "Does Cleaner Household Energy Promote Agricultural Green Production? Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    19. Lijing Lei & Hua Shao, 2023. "Plant Growth Stimulatory Effect of Terrein and Its Mechanism of Action in Crops under Drought Stress," Agriculture, MDPI, vol. 13(10), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    2. Zeeshan Arshad & Margarita Robaina & Anabela Botelho, 2020. "Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 368-383.
    3. Belaïd, Fateh & Zrelli, Maha Harbaoui, 2019. "Renewable and non-renewable electricity consumption, environmental degradation and economic development: Evidence from Mediterranean countries," Energy Policy, Elsevier, vol. 133(C).
    4. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    5. SENTURK, Mehmet & AKBAS, Yusuf Ekrem & OZKAN, Gokcen, 2014. "Cross Sectional Dependence and Cointegration Analysis among the GDP-Foreign Direct Investment and Aggregate Credits: Evidence from Selected Developing Countries," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(11), pages 1485-1501, November.
    6. Costantini, Valeria & Martini, Chiara, 2010. "The causality between energy consumption and economic growth: A multi-sectoral analysis using non-stationary cointegrated panel data," Energy Economics, Elsevier, vol. 32(3), pages 591-603, May.
    7. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    8. Edmore Mahembe & Nicholas Mbaya Odhiambo, 2019. "Foreign aid, poverty and economic growth in developing countries: A dynamic panel data causality analysis," Cogent Economics & Finance, Taylor & Francis Journals, vol. 7(1), pages 1626321-162, January.
    9. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    10. Muhammad Azam, 2022. "Governance and Economic Growth: Evidence from 14 Latin America and Caribbean Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(2), pages 1470-1495, June.
    11. Jacobo Campo Robledo & Henry Antonio Mendoza Tolosa, 2014. "Gasto Público y Crecimiento Económico regional en Colombia (1984 - 2012)," Documentos de Trabajo 12425, Universidad Católica de Colombia.
    12. Solarin, Sakiru Adebola & Ozturk, Ilhan, 2016. "The relationship between natural gas consumption and economic growth in OPEC members," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1348-1356.
    13. Md. Qamruzzaman & Jianguo Wei, 2019. "Financial Innovation and Financial Inclusion Nexus in South Asian Countries: Evidence from Symmetric and Asymmetric Panel Investigation," IJFS, MDPI, vol. 7(4), pages 1-27, October.
    14. Ajide, Kazeem & Ridwan, Ibrahim, 2018. "Energy consumption, environmental contaminants, and economic growth: The G8 experience," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 51, pages 58-83.
    15. Pedro M. G. Martins, 2010. "Aid Absorption and Spending in Africa: A Panel Cointegration Approach," Working Paper Series 1010, Department of Economics, University of Sussex Business School.
    16. Fang, Zheng & Chang, Youngho, 2016. "Energy, human capital and economic growth in Asia Pacific countries — Evidence from a panel cointegration and causality analysis," Energy Economics, Elsevier, vol. 56(C), pages 177-184.
    17. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    18. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    19. Acikgoz, Senay & Ben Ali, Mohamed Sami, 2019. "Where does economic growth in the Middle Eastern and North African countries come from?," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 172-183.
    20. Pedro Teles & Harald Uhlig & João Valle e Azevedo, 2016. "Is Quantity Theory Still Alive?," Economic Journal, Royal Economic Society, vol. 126(591), pages 442-464, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:12:p:7155-:d:836175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.