IDEAS home Printed from https://ideas.repec.org/a/spr/snbeco/v3y2023i1d10.1007_s43546-022-00373-5.html
   My bibliography  Save this article

Estimating energy demand elasticities for gas exporting countries: a dynamic panel data approach

Author

Listed:
  • Eshagh Mansourkiaee

    (NIOC (Economic Assessment and Research Department))

Abstract

This paper estimates the price and GDP/income elasticities of residential sector gas demand in the number of gas exporting countries over 1990–2019 by applying the homogenous OLS, TSLS and GMM methods to a panel data set. The energy demand is specified by a simple partial adjustment model. The study finds that gas exporting countries are nonresponsive to price changes either in a short or long-term period. Although the results for income elasticity are not conclusive in terms of magnitude and sign, they show that short-run income elasticity is inelastic and smaller than that of long-run. The study also provides results of heterogeneous 2SLS estimators for individual countries. Comparing these results with the results of the previous similar study using the ARDL bounds testing approach shows that while there is wide variability between individual estimations, both studies have found almost similar long-run income elasticity on average. For the long-run price elasticity, however, the ARDL model seems to give more intuitive results in terms of sign and magnitude.

Suggested Citation

  • Eshagh Mansourkiaee, 2023. "Estimating energy demand elasticities for gas exporting countries: a dynamic panel data approach," SN Business & Economics, Springer, vol. 3(1), pages 1-28, January.
  • Handle: RePEc:spr:snbeco:v:3:y:2023:i:1:d:10.1007_s43546-022-00373-5
    DOI: 10.1007/s43546-022-00373-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43546-022-00373-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43546-022-00373-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baltagi, Badi H. & Feng, Qu & Kao, Chihwa, 2012. "A Lagrange Multiplier test for cross-sectional dependence in a fixed effects panel data model," Journal of Econometrics, Elsevier, vol. 170(1), pages 164-177.
    2. Badi H. Baltagi & Georges Bresson & James M. Griffin & Alain Pirotte, 2003. "Homogeneous, heterogeneous or shrinkage estimators? Some empirical evidence from French regional gasoline consumption," Empirical Economics, Springer, vol. 28(4), pages 795-811, November.
    3. Anindya Banerjee & Massimiliano Marcellino & Chiara Osbat, 2004. "Some cautions on the use of panel methods for integrated series of macroeconomic data," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 322-340, December.
    4. Pedroni, Peter, 2004. "Panel Cointegration: Asymptotic And Finite Sample Properties Of Pooled Time Series Tests With An Application To The Ppp Hypothesis," Econometric Theory, Cambridge University Press, vol. 20(3), pages 597-625, June.
    5. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    6. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    7. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential consumption of gas and electricity in the U.S.: The role of prices and income," Energy Economics, Elsevier, vol. 33(5), pages 870-881, September.
    8. Miss Rita Babihuga, 2007. "Macroeconomic and Financial Soundness Indicators: An Empirical Investigation," IMF Working Papers 2007/115, International Monetary Fund.
    9. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    10. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    11. Chang, Yoosoon, 2002. "Nonlinear IV unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 110(2), pages 261-292, October.
    12. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    13. Halim Tatli, 2018. "Multiple Determinants of Household Natural Gas Demand: A Panel Data Analysis in OECD Countries," Asian Development Policy Review, Asian Economic and Social Society, vol. 6(4), pages 243-253, December.
    14. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    15. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    16. Gang Liu, 2004. "Estimating Energy Demand Elasticities for OECD Countries. A Dynamic Panel Data Approach," Discussion Papers 373, Statistics Norway, Research Department.
    17. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    18. Burke, Paul J., 2013. "The national-level energy ladder and its carbon implications," Environment and Development Economics, Cambridge University Press, vol. 18(4), pages 484-503, August.
    19. Havranek, Tomas & Kokes, Ondrej, 2015. "Income elasticity of gasoline demand: A meta-analysis," Energy Economics, Elsevier, vol. 47(C), pages 77-86.
    20. Nichele, Veronique & Robin, Jean-Marc, 1995. "Simulation of indirect tax reforms using pooled micro and macro French data," Journal of Public Economics, Elsevier, vol. 56(2), pages 225-244, February.
    21. Helmut Lütkepohl & Pentti Saikkonen & Carsten Trenkler, 2001. "Maximum eigenvalue versus trace tests for the cointegrating rank of a VAR process," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 1-8.
    22. Kao, Chihwa, 1999. "Spurious regression and residual-based tests for cointegration in panel data," Journal of Econometrics, Elsevier, vol. 90(1), pages 1-44, May.
    23. Burke, Paul J. & Yang, Hewen, 2016. "The price and income elasticities of natural gas demand: International evidence," Energy Economics, Elsevier, vol. 59(C), pages 466-474.
    24. Im, Kyung So & Pesaran, M. Hashem & Shin, Yongcheol, 2003. "Testing for unit roots in heterogeneous panels," Journal of Econometrics, Elsevier, vol. 115(1), pages 53-74, July.
    25. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    26. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    27. Baltagi, Badi H. & Griffin, James M., 1997. "Pooled estimators vs. their heterogeneous counterparts in the context of dynamic demand for gasoline," Journal of Econometrics, Elsevier, vol. 77(2), pages 303-327, April.
    28. Maddala, G S, et al, 1997. "Estimation of Short-Run and Long-Run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 90-100, January.
    29. Strauss, Jack & Yigit, Taner, 2003. "Shortfalls of panel unit root testing," Economics Letters, Elsevier, vol. 81(3), pages 309-313, December.
    30. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    31. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    32. Garcia-Cerrutti, L. Miguel, 2000. "Estimating elasticities of residential energy demand from panel county data using dynamic random variables models with heteroskedastic and correlated error terms," Resource and Energy Economics, Elsevier, vol. 22(4), pages 355-366, October.
    33. Keen, Michael, 1986. "Zero Expenditures and the Estimation of Engel Curves," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(3), pages 277-286, July.
    34. Alberini, Anna & Gans, Will & Velez-Lopez, Daniel, 2011. "Residential Consumption of Gas and Electricity in the U.S.: The Role of Prices and Income," Sustainable Development Papers 99637, Fondazione Eni Enrico Mattei (FEEM).
    35. Choi, In, 2001. "Unit root tests for panel data," Journal of International Money and Finance, Elsevier, vol. 20(2), pages 249-272, April.
    36. Harris, David & Leybourne, Stephen & McCabe, Brendan, 2005. "Panel Stationarity Tests for Purchasing Power Parity With Cross-Sectional Dependence," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 395-409, October.
    37. Baltagi, Badi H. & Griffin, James M., 1983. "Gasoline demand in the OECD : An application of pooling and testing procedures," European Economic Review, Elsevier, vol. 22(2), pages 117-137, July.
    38. Maximilian Auffhammer & Edward Rubin, 2018. "Natural Gas Price Elasticities and Optimal Cost Recovery Under Consumer Heterogeneity: Evidence from 300 million natural gas bills," NBER Working Papers 24295, National Bureau of Economic Research, Inc.
    39. Badi H. Baltagi & James M. Griffin & Weiwen Xiong, 2000. "To Pool Or Not To Pool: Homogeneous Versus Hetergeneous Estimations Applied to Cigarette Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 117-126, February.
    40. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    41. G. S. Maddala & Shaowen Wu, 1999. "A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(S1), pages 631-652, November.
    42. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    43. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    44. Pock, Markus, 2010. "Gasoline demand in Europe: New insights," Energy Economics, Elsevier, vol. 32(1), pages 54-62, January.
    45. Levin, Andrew & Lin, Chien-Fu & James Chu, Chia-Shang, 2002. "Unit root tests in panel data: asymptotic and finite-sample properties," Journal of Econometrics, Elsevier, vol. 108(1), pages 1-24, May.
    46. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    2. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    3. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    4. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    5. Angeliki N. Menegaki, 2019. "The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies," Economies, MDPI, vol. 7(4), pages 1-16, October.
    6. Dobnik, Frauke, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 303, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Breitung, Jörg & Pesaran, Mohammad Hashem, 2005. "Unit roots and cointegration in panels," Discussion Paper Series 1: Economic Studies 2005,42, Deutsche Bundesbank.
    8. Scott, K. Rebecca, 2011. "Demand and price volatility: rational habits in international gasoline demand," CUDARE Working Papers 121931, University of California, Berkeley, Department of Agricultural and Resource Economics.
    9. Neelu Seetaram & Sylvain Petit, 2012. "Panel data analysis in Tourism Research," Post-Print hal-01831529, HAL.
    10. Karikallio, Hanna, 2015. "Cross-commodity Price Transmission and Integration of the EU Livestock Market of Pork and Beef: Panel Time-series Approach," 2015 Conference, August 9-14, 2015, Milan, Italy 211832, International Association of Agricultural Economists.
    11. Güzin Bayar, 2018. "Estimating export equations: a survey of the literature," Empirical Economics, Springer, vol. 54(2), pages 629-672, March.
    12. Tarik Dogru & Umit Bulut & Ercan Sirakaya-Turk, 2021. "Modeling tourism demand: Theoretical and empirical considerations for future research," Tourism Economics, , vol. 27(4), pages 874-889, June.
    13. Frauke Dobnik, 2011. "Energy Consumption and Economic Growth Revisited: Structural Breaks and Cross-section Dependence," Ruhr Economic Papers 0303, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    14. Ajide, Kazeem & Ridwan, Ibrahim, 2018. "Energy consumption, environmental contaminants, and economic growth: The G8 experience," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 51, pages 58-83.
    15. Pedro M. G. Martins, 2010. "Aid Absorption and Spending in Africa: A Panel Cointegration Approach," Working Paper Series 1010, Department of Economics, University of Sussex Business School.
    16. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    17. Vishal Jaunky, 2013. "Democracy and economic growth in Sub-Saharan Africa: a panel data approach," Empirical Economics, Springer, vol. 45(2), pages 987-1008, October.
    18. repec:zbw:rwirep:0303 is not listed on IDEAS
    19. Gautam, Tej K. & Paudel, Krishna P., 2018. "The demand for natural gas in the Northeastern United States," Energy, Elsevier, vol. 158(C), pages 890-898.
    20. Eleftherios Thalassinos & Marta Kadłubek & Le Minh Thong & Tran Van Hiep & Erginbay Ugurlu, 2022. "Managerial Issues Regarding the Role of Natural Gas in the Transition of Energy and the Impact of Natural Gas Consumption on the GDP of Selected Countries," Resources, MDPI, vol. 11(5), pages 1-22, April.
    21. Damette, Olivier & Seghir, Majda, 2013. "Energy as a driver of growth in oil exporting countries?," Energy Economics, Elsevier, vol. 37(C), pages 193-199.

    More about this item

    Keywords

    Residential sector; Gas demand; Price elasticity; Income elasticity; Gas exporting; Panel data;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • R2 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis
    • R21 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Housing Demand

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snbeco:v:3:y:2023:i:1:d:10.1007_s43546-022-00373-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.