IDEAS home Printed from https://ideas.repec.org/a/pal/palcom/v11y2024i1d10.1057_s41599-024-03354-1.html
   My bibliography  Save this article

Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions

Author

Listed:
  • Hanjin Li

    (Ocean University of China)

  • Hu Tian

    (Ocean University of China)

  • Xinyu Liu

    (Hohai University)

  • Jiansheng You

    (Shanghai University of Finance and Economics)

Abstract

Promoting low-carbon agricultural development is essential for achieving carbon neutrality and peak carbon emission goals. The emergence of digital inclusive finance has opened a new pathway to reduce agricultural carbon emissions. This study uses data from various provinces in China from 2011 to 2021 to explore the impact of digital inclusive finance on agricultural carbon emissions and its mechanism of action. The results show that during the study period, agricultural carbon emissions first increased and then decreased, with the emission gap between the eastern and western regions narrowing, while the gap between the southern and northern regions widened. Digital inclusive finance has an inverted “U-shaped” nonlinear impact on agricultural carbon emissions, with the depth of use and the degree of digitization being key factors. Agricultural carbon emissions only begin to be effectively suppressed when the scale of digital inclusive finance exceeds the peak value. Additionally, the development of agricultural green cooperatives weakens the emission reduction effect of digital inclusive finance, indicating a decoupling between their developments, while the accumulation of human capital enhances its emission reduction effect. Based on this, the government is advised to continue promoting low-carbon strategies and the development of digital inclusivity in rural areas. Financial institutions should develop financial products suitable for agricultural green cooperatives, and agricultural green cooperatives should also provide timely feedback and communication to achieve coordinated development between the two. Furthermore, education and training for farmers should be strengthened to encourage them to learn and adopt new technologies.

Suggested Citation

  • Hanjin Li & Hu Tian & Xinyu Liu & Jiansheng You, 2024. "Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03354-1
    DOI: 10.1057/s41599-024-03354-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41599-024-03354-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41599-024-03354-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    2. Yin, Zhichao & Gong, Xue & Guo, Peiyao & Wu, Tao, 2019. "What Drives Entrepreneurship in Digital Economy? Evidence from China," Economic Modelling, Elsevier, vol. 82(C), pages 66-73.
    3. Yang Liu & Chunyu Liu & Mi Zhou, 2021. "Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD)," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 13(2), pages 475-494, January.
    4. Shahbaz, Muhammad & Shahzad, Syed Jawad Hussain & Ahmad, Nawaz & Alam, Shaista, 2016. "Financial development and environmental quality: The way forward," Energy Policy, Elsevier, vol. 98(C), pages 353-364.
    5. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia," Energy Policy, Elsevier, vol. 40(C), pages 473-479.
    6. Lili Guo & Shuang Zhao & Yuting Song & Mengqian Tang & Houjian Li, 2022. "Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production," Agriculture, MDPI, vol. 12(3), pages 1-18, February.
    7. Xiuquan Huang & Xiaocang Xu & Qingqing Wang & Lu Zhang & Xin Gao & Linhong Chen, 2019. "Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997–2016," IJERPH, MDPI, vol. 16(17), pages 1-15, August.
    8. Guofeng Wang & Maolin Liao & Jie Jiang, 2020. "Research on Agricultural Carbon Emissions and Regional Carbon Emissions Reduction Strategies in China," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Yue Zhang & Mengwei Feng & Zhengshuai Fang & Fujin Yi & Zhenzhen Liu, 2023. "Impact of Digital Village Construction on Agricultural Carbon Emissions: Evidence from Mainland China," IJERPH, MDPI, vol. 20(5), pages 1-19, February.
    11. Bingfei Bao & Baoxiang Fei & Gaigai Ren & Shengtian Jin, 2024. "Study on the impact of digital finance on agricultural carbon emissions from a spatial perspective: an analysis based on provincial panel data," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 497-507.
    12. Richard F. J. Haans & Constant Pieters & Zi-Lin He, 2016. "Thinking about U: Theorizing and testing U- and inverted U-shaped relationships in strategy research," Strategic Management Journal, Wiley Blackwell, vol. 37(7), pages 1177-1195, July.
    13. Chunyan He & Anjie Li & Ding Li & Junlin Yu, 2022. "Does Digital Inclusive Finance Mitigate the Negative Effect of Climate Variation on Rural Residents’ Income Growth in China?," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    14. Guangyue Xu & Juanjuan Li & Peter M. Schwarz & Hualiu Yang & Huiying Chang, 2022. "Rural financial development and achieving an agricultural carbon emissions peak: an empirical analysis of Henan Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12936-12962, November.
    15. Julius Manda & Arega D. Alene & Cornelis Gardebroek & Menale Kassie & Gelson Tembo, 2016. "Adoption and Impacts of Sustainable Agricultural Practices on Maize Yields and Incomes: Evidence from Rural Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 130-153, February.
    16. Yang Liu & Chunyu Liu & Mi Zhou, 2021. "Does digital inclusive finance promote agricultural production for rural households in China? Research based on the Chinese family database (CFD)," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 13(2), pages 475-494, January.
    17. Mao Wu & Jiayi Guo & Hongzhi Tian & Yuanyuan Hong, 2022. "Can Digital Finance Promote Peak Carbon Dioxide Emissions? Evidence from China," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    18. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    19. Hua Guo & Fan Gu & Yanling Peng & Xin Deng & Lili Guo, 2022. "Does Digital Inclusive Finance Effectively Promote Agricultural Green Development?—A Case Study of China," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    20. Hui Zhao & Yaru Yang & Ning Li & Desheng Liu & Hui Li, 2021. "How Does Digital Finance Affect Carbon Emissions? Evidence from an Emerging Market," Sustainability, MDPI, vol. 13(21), pages 1-20, November.
    21. Mingyong Hong & Mengjie Tian & Ji Wang, 2022. "Digital Inclusive Finance, Agricultural Industrial Structure Optimization and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    22. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    23. Yuyu Liu & Duan Ji & Lin Zhang & Jingjing An & Wenyan Sun, 2021. "Rural Financial Development Impacts on Agricultural Technology Innovation: Evidence from China," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuelian Li & Tinghui Lu & Jyh-Horng Lin & Ching-Hui Chang, 2024. "Insurer green financing for a supply chain under cap-and-trade regulation: a capped call contingent claim analysis," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao Hu & Jin Fan & Jian Chen, 2022. "Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    2. Acheampong, Alex O., 2019. "Modelling for insight: Does financial development improve environmental quality?," Energy Economics, Elsevier, vol. 83(C), pages 156-179.
    3. Quan Xiao & Yu Wang & Haojie Liao & Gang Han & Yunjie Liu, 2023. "The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: A Study Based on China’s Provinces," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    4. George E. Halkos & Michael L. Polemis, 2017. "Does Financial Development Affect Environmental Degradation? Evidence from the OECD Countries," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1162-1180, December.
    5. Mengyao Xia & Di Zeng & Qi Huang & Xinjian Chen, 2022. "Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    6. Dong-Hyeon Kim & Yi-Chen Wu & Shu-Chin Lin, 2022. "Carbon dioxide emissions, financial development and political institutions," Economic Change and Restructuring, Springer, vol. 55(2), pages 837-874, May.
    7. Lin Zhang & Jinyan Chen & Faustino Dinis & Sha Wei & Chengzhi Cai, 2022. "Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    8. Shaolong Zeng & Qinyi Fu & Fazli Haleem & Yang Shen & Jiedong Zhang, 2023. "Carbon-Reduction, Green Finance, and High-Quality Economic Development: A Case of China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    9. Hua Zhang & Ying Li & Hanxiaoxue Sun & Xiaohui Wang, 2023. "How Can Digital Financial Inclusion Promote High-Quality Agricultural Development? The Multiple-Mediation Model Research," IJERPH, MDPI, vol. 20(4), pages 1-19, February.
    10. Ulucak, Zübeyde Şentürk & İlkay, Salih Çağrı & Özcan, Burcu & Gedikli, Ayfer, 2020. "Financial globalization and environmental degradation nexus: Evidence from emerging economies," Resources Policy, Elsevier, vol. 67(C).
    11. Linlin Wang & Zixin Zhou & Yi Chen & Liangen Zeng & Linlin Dai, 2024. "How Does Digital Inclusive Finance Policy Affect the Carbon Emission Intensity of Industrial Land in the Yangtze River Economic Belt of China? Evidence from Intermediary and Threshold Effects," Land, MDPI, vol. 13(8), pages 1-17, July.
    12. Halkos, George & Polemis, Michael, 2016. "Examining the impact of financial development on the environmental Kuznets curve hypothesis," MPRA Paper 75368, University Library of Munich, Germany.
    13. Hrosul, Viktoriia & Kruhlova, Olena & Kolesnyk, Alina, 2023. "Digitalization of the agricultural sector: the impact of ICT on the development of enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 9(4), December.
    14. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    15. Muhammad Shahbaz & Syed Jawad Hussain Shahzad & Mantu Kumar Mahalik & Perry Sadorsky, 2018. "How strong is the causal relationship between globalization and energy consumption in developed economies? A country-specific time-series and panel analysis," Applied Economics, Taylor & Francis Journals, vol. 50(13), pages 1479-1494, March.
    16. Wang, Xiong & Wang, Xiao & Ren, Xiaohang & Wen, Fenghua, 2022. "Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach," Energy Economics, Elsevier, vol. 109(C).
    17. Le Sun & Congmou Zhu & Shaofeng Yuan & Lixia Yang & Shan He & Wuyan Li, 2022. "Exploring the Impact of Digital Inclusive Finance on Agricultural Carbon Emission Performance in China," IJERPH, MDPI, vol. 19(17), pages 1-18, September.
    18. Song, Xiaoling & Yao, Yumeng & Wu, Xueke, 2023. "Digital finance, technological innovation, and carbon dioxide emissions," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 482-494.
    19. Feng, Xinzhen & Zhou, Dequn & Hussain, Tufail, 2024. "An investigation of fintech governance, natural resources and government stability on sustainability: Policy suggestions under the SDGs theme," Resources Policy, Elsevier, vol. 96(C).
    20. Hanning, Wang & Sial, Muhammad Safdar & Li Shunyi, & Samad, Sarminah & Comite, Ubaldo, 2024. "Asymmetric impact of energy consumption & financial development on environment using ARDL approach: Case of ASEAN countries," Energy, Elsevier, vol. 305(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:palcom:v:11:y:2024:i:1:d:10.1057_s41599-024-03354-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: https://www.nature.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.