IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i5p919-d1130051.html
   My bibliography  Save this article

Carbon Emissions from Agricultural Inputs in China over the Past Three Decades

Author

Listed:
  • Shixiong Song

    (School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China
    Zhejiang Academy of Eco-Civilization, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Siyuan Zhao

    (School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Ye Zhang

    (School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Yongxi Ma

    (School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China
    Zhejiang Academy of Eco-Civilization, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

Global warming has become one of the major threats to the security of human survival, security, and sustainable development. Agricultural production has been widely suspected as one of the main sources of anthropogenic carbon emissions. Analyzing the changing characteristics and influencing factors of agricultural carbon emissions is of great significance for the mitigation of global climate change and the sustainable development in agriculture. Taking China, a large agricultural country, as an example, this study used the empirical model to quantify carbon emissions from agricultural inputs from 1991 to 2019, and analyzed the driving factors using ridge regression. We found that agricultural carbon emissions in China have been on the rise in the past 30 years, but at a markedly slower pace. From 2008 to 2019, the average annual growth rate of agricultural carbon emissions was 1.47%, down significantly from 2.92% between 1991 and 2007. The carbon emissions per unit of planting area showed an overall increasing trend, which grew from 179.35 t ce/km 2 to 246.26 t ce/km 2 , with an average annual growth rate of 1.13%. The carbon emissions per unit of agricultural output mainly showed a decreasing trend, which decreased from 0.52 kg ce/CNY to 0.06 kg ce/CNY, with an average annual rate of change of −7.42%. China’s agricultural carbon emissions were closely related to macro-policies. Fertilizer inputs, agricultural industry structure, and energy use intensity were significantly positively correlated with carbon emission intensity. The degree of urban feedback to rural areas, public investment in agriculture, and large-scale planting were significantly negatively correlated with carbon emission intensity, but the impacts of these factors had a “lag effect”. In order to reduce carbon emissions from agriculture and promote development in green agriculture, we suggest that the government should further increase the degree of urban feedback to rural and public investment in the agricultural sector. In addition, large-scale agricultural production should be encouraged to increase resource efficiency and reduce carbon emissions.

Suggested Citation

  • Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:919-:d:1130051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/5/919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/5/919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shibin Wen & Yuxiang Hu & Hongman Liu, 2022. "Measurement and Spatial–Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective," Agriculture, MDPI, vol. 12(11), pages 1-16, October.
    2. Yongxi Ma & Lu Zhang & Shixiong Song & Shuao Yu, 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    3. Lili Guo & Shuang Zhao & Yuting Song & Mengqian Tang & Houjian Li, 2022. "Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production," Agriculture, MDPI, vol. 12(3), pages 1-18, February.
    4. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    5. Jennifer E. Kay, 2020. "Early climate models successfully predicted global warming," Nature, Nature, vol. 578(7793), pages 45-46, February.
    6. Ying Tang & Menghan Chen, 2022. "Impact Mechanism and Effect of Agricultural Land Transfer on Agricultural Carbon Emissions in China: Evidence from Mediating Effect Test and Panel Threshold Regression Model," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    7. Xiaowen Dai & Xin Wu & Yi Chen & Yanqiu He & Fang Wang & Yuying Liu, 2022. "Real Drivers and Spatial Characteristics of CO 2 Emissions from Animal Husbandry: A Regional Empirical Study of China," Agriculture, MDPI, vol. 12(4), pages 1-18, April.
    8. Xu, Bin & Lin, Boqiang, 2017. "Factors affecting CO2 emissions in China’s agriculture sector: Evidence from geographically weighted regression model," Energy Policy, Elsevier, vol. 104(C), pages 404-414.
    9. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    10. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    11. Hongman Liu & Shibin Wen & Zhuang Wang, 2022. "Agricultural production agglomeration and total factor carbon productivity: based on NDDF–MML index analysis," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 14(4), pages 709-740, July.
    12. Chuanhe Xiong & Shuang Chen & Liting Xu, 2020. "Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China," Growth and Change, Wiley Blackwell, vol. 51(3), pages 1401-1416, September.
    13. Zhang, Yingnan & Long, Hualou & Li, Yurui & Ge, Dazhuan & Tu, Shuangshuang, 2020. "How does off-farm work affect chemical fertilizer application? Evidence from China’s mountainous and plain areas," Land Use Policy, Elsevier, vol. 99(C).
    14. Zehua Li & Xiaola Wu & Xicheng Wang & Haimin Zhong & Jiongtao Chen & Xu Ma, 2022. "Measurement and Analysis of Contribution Rate for China Rice Input Factors via a Varying-Coefficient Production Function Model," Agriculture, MDPI, vol. 12(9), pages 1-19, September.
    15. You, Liangzhi & Spoor, Max & Ulimwengu, John & Zhang, Shemei, 2011. "Land use change and environmental stress of wheat, rice and corn production in China," China Economic Review, Elsevier, vol. 22(4), pages 461-473.
    16. Heena Panchasara & Nahidul Hoque Samrat & Nahina Islam, 2021. "Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review," Agriculture, MDPI, vol. 11(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yufei Wang & Shuang Liang & Yuxin Liang & Xiaoxue Liu, 2024. "A Comprehensive Accounting of Carbon Emissions and Carbon Sinks of China’s Agricultural Sector," Land, MDPI, vol. 13(9), pages 1-23, September.
    2. Muziyun Liu & Hui Liu, 2023. "Influence of Climate Change on Carbon Emissions during Grain Production and Its Mechanism," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    3. Guanghe Han & Jiahui Xu & Xin Zhang & Xin Pan, 2024. "Efficiency and Driving Factors of Agricultural Carbon Emissions: A Study in Chinese State Farms," Agriculture, MDPI, vol. 14(9), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xidong Zhang & Juan Zhang & Chengbo Yang, 2023. "Spatio-Temporal Evolution of Agricultural Carbon Emissions in China, 2000–2020," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Yang Qi & Mingyue Gao & Haoyu Wang & Huijie Ding & Jianxu Liu & Songsak Sriboonchitta, 2023. "Does Marketization Promote High-Quality Agricultural Development in China?," Sustainability, MDPI, vol. 15(12), pages 1-28, June.
    3. Bingbing Huang & Hui Kong & Jinhong Yu & Xiaoyou Zhang, 2022. "A Study on the Impact of Low-Carbon Technology Application in Agriculture on the Returns of Large-Scale Farmers," IJERPH, MDPI, vol. 19(16), pages 1-18, August.
    4. Quan Xiao & Yu Wang & Haojie Liao & Gang Han & Yunjie Liu, 2023. "The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: A Study Based on China’s Provinces," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    6. Lijing Lei & Hua Shao, 2023. "Plant Growth Stimulatory Effect of Terrein and Its Mechanism of Action in Crops under Drought Stress," Agriculture, MDPI, vol. 13(10), pages 1-13, September.
    7. Zhou Zhou & Jianqiang Duan & Shaoqing Geng & Ran Li, 2023. "Spatial Network and Driving Factors of Agricultural Green Total Factor Productivity in China," Energies, MDPI, vol. 16(14), pages 1-26, July.
    8. Mengyao Xia & Di Zeng & Qi Huang & Xinjian Chen, 2022. "Coupling Coordination and Spatiotemporal Dynamic Evolution between Agricultural Carbon Emissions and Agricultural Modernization in China 2010–2020," Agriculture, MDPI, vol. 12(11), pages 1-19, October.
    9. Ruoxi Zhong & Qiang He & Yanbin Qi, 2022. "Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    10. Lin Zhang & Jinyan Chen & Faustino Dinis & Sha Wei & Chengzhi Cai, 2022. "Decoupling Effect, Driving Factors and Prediction Analysis of Agricultural Carbon Emission Reduction and Product Supply Guarantee in China," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    11. Fanghua Li & Wei Liang & Dungang Zang & Abbas Ali Chandio & Yinying Duan, 2022. "Does Cleaner Household Energy Promote Agricultural Green Production? Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    12. Shaolong Zeng & Qinyi Fu & Fazli Haleem & Yang Shen & Jiedong Zhang, 2023. "Carbon-Reduction, Green Finance, and High-Quality Economic Development: A Case of China," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    13. Decai Tang & Hui Zhong & Jingyi Zhang & Yongguang Dai & Valentina Boamah, 2022. "The Effect of Green Finance on the Ecological and Environmental Quality of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 19(19), pages 1-17, September.
    14. Chao Hu & Jin Fan & Jian Chen, 2022. "Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    15. Hanjin Li & Hu Tian & Xinyu Liu & Jiansheng You, 2024. "Transitioning to low-carbon agriculture: the non-linear role of digital inclusive finance in China’s agricultural carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    16. Muziyun Liu & Hui Liu, 2023. "Influence of Climate Change on Carbon Emissions during Grain Production and Its Mechanism," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    17. Zirong Lin & Hui Wang & Wei Li & Min Chen, 2023. "Impact of Green Finance on Carbon Emissions Based on a Two-Stage LMDI Decomposition Method," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    18. Tingting Huang & Bin Xiong, 2022. "Space Comparison of Agricultural Green Growth in Agricultural Modernization: Scale and Quality," Agriculture, MDPI, vol. 12(7), pages 1-17, July.
    19. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    20. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:5:p:919-:d:1130051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.