IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p11849-d920143.html
   My bibliography  Save this article

Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints

Author

Listed:
  • Luo Muchen

    (Faculty of Economics and Business, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
    School of Management, Suzhou University, Suzhou 234000, China)

  • Rosita Hamdan

    (Faculty of Economics and Business, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia)

  • Rossazana Ab-Rahim

    (Faculty of Economics and Business, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia)

Abstract

To cope with global carbon reduction pressure, improved agricultural production efficiency, and optimize regional sustainability, we constructed a data-driven evaluation and optimization method for agricultural environmental efficiency (AEE) under carbon constraints. This study constructs a comprehensive input-output AEE evaluation index system, incorporates carbon emissions from agricultural production processes as undesired outputs, and optimizes their calculation. The Minimum Distance to Strong Efficient Frontier evaluation model considering undesired output, and the kernel density estimation, are used to quantitatively evaluate AEE from static and dynamic perspectives. Tobit regression models are further used to analyze the driving influences of AEE and propose countermeasures to optimize AEE. The feasibility of the above methodological process was tested using 2015–2020 data from the Anhui Province, China. Although there is still scope for optimizing the AEE in Anhui, the overall trend is positive and shows a development trend of “double peaks”. The levels of education, economic development, agricultural water supply capacity, and rural management are important factors contributing to AEE differences in Anhui. Data and regression analysis results contribute to the optimization of AEE and proposes optimization strategies. This study provides extensions and refinements of the AEE evaluation and optimization, and contributes to sustainable development of regions.

Suggested Citation

  • Luo Muchen & Rosita Hamdan & Rossazana Ab-Rahim, 2022. "Data-Driven Evaluation and Optimization of Agricultural Environmental Efficiency with Carbon Emission Constraints," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11849-:d:920143
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/11849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/11849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sinkin, Charlene & Wright, Charlotte J. & Burnett, Royce D., 2008. "Eco-efficiency and firm value," Journal of Accounting and Public Policy, Elsevier, vol. 27(2), pages 167-176.
    2. Bowen Wang & Desheng Hu & Diandian Hao & Meng Li & Yanan Wang, 2021. "Influence of Government Information on Farmers’ Participation in Rural Residential Environment Governance: Mediating Effect Analysis Based on Moderation," IJERPH, MDPI, vol. 18(23), pages 1-15, November.
    3. Min Qian & Zhenpeng Cheng & Zhengwen Wang & Dingyi Qi, 2022. "What Affects Rural Ecological Environment Governance Efficiency? Evidence from China," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
    4. Qiang Li & Xiaohang Wu & Yi Zhang & Yafei Wang, 2020. "The Effect of Agricultural Environmental Total Factor Productivity on Urban-Rural Income Gap: Integrated View from China," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    5. Duyen Nhat Lam Tran & Tien Dinh Nguyen & Thuy Thu Pham & Roberto F. Rañola & Thinh An Nguyen, 2021. "Improving Irrigation Water Use Efficiency of Robusta Coffee ( Coffea canephora ) Production in Lam Dong Province, Vietnam," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Lili Guo & Shuang Zhao & Yuting Song & Mengqian Tang & Houjian Li, 2022. "Green Finance, Chemical Fertilizer Use and Carbon Emissions from Agricultural Production," Agriculture, MDPI, vol. 12(3), pages 1-18, February.
    7. tone, Kaoru, 2010. "Variations on the theme of slacks-based measure of efficiency in DEA," European Journal of Operational Research, Elsevier, vol. 200(3), pages 901-907, February.
    8. Theodoros Skevas & Teresa Serra, 2017. "Derivation of netput shadow prices under different levels of pest pressure," Journal of Productivity Analysis, Springer, vol. 48(1), pages 25-34, August.
    9. Theodoros Skevas & Teresa Serra, 2017. "Erratum to: Derivation of netput shadow prices under different levels of pest pressure," Journal of Productivity Analysis, Springer, vol. 48(1), pages 35-35, August.
    10. MARCHAND, Sébastien & GUO, Huanxiu, 2014. "The environmental efficiency of non-certified organic farming in China: A case study of paddy rice production," China Economic Review, Elsevier, vol. 31(C), pages 201-216.
    11. Xingle Long & Yusen Luo & Huaping Sun & Gang Tian, 2018. "Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1573-1591, July.
    12. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    13. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    14. Xiaohu Li & Xigang Zhu & Jianshu Li & Chao Gu, 2021. "Influence of Different Industrial Agglomeration Modes on Eco-Efficiency in China," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    15. Knox Lovell, C. A. & Pastor, Jesus T. & Turner, Judi A., 1995. "Measuring macroeconomic performance in the OECD: A comparison of European and non-European countries," European Journal of Operational Research, Elsevier, vol. 87(3), pages 507-518, December.
    16. Lili Guo & Sihang Guo & Mengqian Tang & Mengying Su & Houjian Li, 2022. "Financial Support for Agriculture, Chemical Fertilizer Use, and Carbon Emissions from Agricultural Production in China," IJERPH, MDPI, vol. 19(12), pages 1-19, June.
    17. Hualin Xie & Yanwei Zhang & Yongrok Choi, 2018. "Measuring the Cultivated Land Use Efficiency of the Main Grain-Producing Areas in China under the Constraints of Carbon Emissions and Agricultural Nonpoint Source Pollution," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
    18. Xianglong Tang & Chenyu Lu & Peng Meng & Wei Cheng, 2022. "Spatiotemporal Evolution of the Environmental Adaptability Efficiency of the Agricultural System in China," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Zihan Guo & Ni Wang & Xiaolian Mao & Xinyue Ke & Shaojiang Luo & Long Yu, 2022. "Benefit Analysis of Economic and Social Water Supply in Xi’an Based on the Emergy Method," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    21. Gong, Xinghui & Zhang, Hongbo & Ren, Chongfeng & Sun, Dongyong & Yang, Jiantao, 2020. "Optimization allocation of irrigation water resources based on crop water requirement under considering effective precipitation and uncertainty," Agricultural Water Management, Elsevier, vol. 239(C).
    22. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    23. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    24. Zainab Bibi & Dilawar Khan & Ihtisham ul Haq, 2021. "Technical and environmental efficiency of agriculture sector in South Asia: a stochastic frontier analysis approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9260-9279, June.
    25. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    26. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    27. Burnett, Royce D. & Hansen, Don R., 2008. "Ecoefficiency: Defining a role for environmental cost management," Accounting, Organizations and Society, Elsevier, vol. 33(6), pages 551-581, August.
    28. Miaosen Ma & Min Zhao, 2019. "Research on an Improved Economic Value Estimation Model for Crop Irrigation Water in Arid Areas: From the Perspective of Water-Crop Sustainable Development," Sustainability, MDPI, vol. 11(4), pages 1-9, February.
    29. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    30. Matthew M. Brooks, 2021. "Countering Depopulation in Kansas: An Assessment of the Rural Opportunity Zone Program," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(2), pages 137-148, April.
    31. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    32. Hai-Ying Gu & Qing-Mi Hu & Tian-Qiong Wang, 2019. "Payment for Rice Growers to Reduce Using N Fertilizer in the GHG Mitigation Program Driven by the Government: Evidence from Shanghai," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bolós, V.J. & Benítez, R. & Coll-Serrano, V., 2024. "Chance constrained directional models in stochastic data envelopment analysis," Operations Research Perspectives, Elsevier, vol. 12(C).
    2. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    3. W. Liu & W. Meng & X. Li & D. Zhang, 2010. "DEA models with undesirable inputs and outputs," Annals of Operations Research, Springer, vol. 173(1), pages 177-194, January.
    4. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Toloo, Mehdi & Ghazizadeh, Mohammad Sadegh, 2016. "Eco-efficiency considering the issue of heterogeneity among power plants," Energy, Elsevier, vol. 111(C), pages 722-735.
    5. Xiang Ji & Jiasen Sun & Qunwei Wang & Qianqian Yuan, 2019. "Revealing Energy Over-Consumption and Pollutant Over-Emission Behind GDP: A New Multi-criteria Sustainable Measure," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1391-1421, December.
    6. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    7. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    8. Hirofumi Fukuyama & Hiroya Masaki & Kazuyuki Sekitani & Jianming Shi, 2014. "Distance optimization approach to ratio-form efficiency measures in data envelopment analysis," Journal of Productivity Analysis, Springer, vol. 42(2), pages 175-186, October.
    9. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    10. Chih-Ching Yang, 2014. "An enhanced DEA model for decomposition of technical efficiency in banking," Annals of Operations Research, Springer, vol. 214(1), pages 167-185, March.
    11. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    12. Haoyue Wu & Jin Tang & Hanjiao Huang & Wenkuan Chen & Yue Meng, 2021. "Net Carbon Sequestration Performance of Cropland Use in China’s Principal Grain-Producing Area: An Evaluation and Spatiotemporal Divergence," Land, MDPI, vol. 10(7), pages 1-19, July.
    13. Fukuyama, Hirofumi & Maeda, Yasunobu & Sekitani, Kazuyuki & Shi, Jianming, 2014. "Input–output substitutability and strongly monotonic p-norm least distance DEA measures," European Journal of Operational Research, Elsevier, vol. 237(3), pages 997-1007.
    14. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    15. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    16. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    17. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    18. Mustapha Daruwana Ibrahim & Sahand Daneshvar & Hüseyin Güden & Bela Vizvari, 2020. "Target setting in data envelopment analysis: efficiency improvement models with predefined inputs/outputs," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1319-1336, December.
    19. César Salazar & Roberto Cárdenas-Retamal & Marcela Jaime, 2023. "Environmental efficiency in the salmon industry—an exploratory analysis around the 2007 ISA virus outbreak and subsequent regulations in Chile," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8107-8135, August.
    20. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:11849-:d:920143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.