IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6943-d832551.html
   My bibliography  Save this article

A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity

Author

Listed:
  • Jing Wang

    (School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Bing Liu

    (Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan 250101, China)

  • Meng Sun

    (Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan)

  • Feiyong Chen

    (Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan 250101, China)

  • Mitsuharu Terashima

    (Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan)

  • Hidenari Yasui

    (Faculty of Environmental Engineering, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu, Kitakyushu 808-0135, Japan)

Abstract

The aim of this study is to evaluate the anaerobic digestion and biogas production of plant biomass under high salinity by adopting a theoretical and technical approach for saline plant-biomass treatment. Two completely mixed lab-scale mesophilic reactors were operated for 480 days. In one of them, NaCl was added and the sodium ion concentration was maintained at 35.8 g-Na + ·L −1 , and the organic loading rate was 0.58-COD·L −1 ·d −1 –1.5 g-COD·L −1 ·d −1 ; the other added Na 2 SO 4 –NaHCO 3 and kept the sodium ion concentration at 27.6 g-Na + ·L −1 and the organic loading rate at 0.2 g-COD·L −1 ·d −1 –0.8 g-COD·L − 1 ·d −1 . The conversion efficiencies of the two systems (COD to methane) were 66% and 54%, respectively. Based on the sulfate-reduction reaction and the existing anaerobic digestion model, a kinetic model comprising 12 types of soluble substrates and 16 types of anaerobic microorganisms was developed. The model was used to simulate the process performance of a continuous anaerobic bioreactor with a mixed liquor suspended solids (MLSS) concentration of 10 g·L −1 –40 g·L −1 . The results showed that the NaCl system could receive the influent up to a loading rate of 0.16 kg-COD/kg-MLSS·d −1 without significant degradation of the methane conversion at 66%, while the Na 2 SO 4 –NaHCO 3 system could receive more than 2 kg-COD·kg −1 -MLSS·d −1 , where 54% of the fed chemical oxygen demand (COD) was converted into methane and another 12% was observed to be sulfide.

Suggested Citation

  • Jing Wang & Bing Liu & Meng Sun & Feiyong Chen & Mitsuharu Terashima & Hidenari Yasui, 2022. "A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity," IJERPH, MDPI, vol. 19(11), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6943-:d:832551
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. Fernández-Palacios & Xudong Zhou & Mabel Mora & David Gabriel, 2021. "Microbial Diversity Dynamics in a Methanogenic-Sulfidogenic UASB Reactor," IJERPH, MDPI, vol. 18(3), pages 1-16, February.
    2. Kitamura, Yoshinobu & Yano, Tomohisa & Honna, Toshimasa & Yamamoto, Sadahiro & Inosako, Koji, 2006. "Causes of farmland salinization and remedial measures in the Aral Sea basin--Research on water management to prevent secondary salinization in rice-based cropping system in arid land," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 1-14, September.
    3. Franco Cecchi & Cristina Cavinato, 2019. "Smart Approaches to Food Waste Final Disposal," IJERPH, MDPI, vol. 16(16), pages 1-13, August.
    4. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    5. Ogechukwu Bose Chukwuma & Mohd Rafatullah & Husnul Azan Tajarudin & Norli Ismail, 2021. "A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products," IJERPH, MDPI, vol. 18(11), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen-Tien Tsai, 2020. "Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan," Resources, MDPI, vol. 9(5), pages 1-11, April.
    2. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    3. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Wang, Yong & Zhao, Yong & Yan, Long & Deng, Wei & Zhai, Jiaqi & Chen, Minjian & Zhou, Fei, 2022. "Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    6. Wei Wei & Yuanjun Zhu & Hao Li & Kebin Zhang & Baitian Wang & Xiaohui Yang & Zhongjie Shi, 2018. "Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
    7. Thayalakumaran, T. & Bethune, M.G. & McMahon, T.A., 2007. "Achieving a salt balance--Should it be a management objective?," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 1-12, August.
    8. Shumin Han & Qiuli Hu & Yonghui Yang & Jiusheng Wang & Ping Wang & Quan Wang, 2015. "Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5323-5337, November.
    9. Feng, Di & Ning, Songrui & Sun, Xiaoan & Zhang, Jingmin & Zhu, Haiyan & Tang, Jingchun & Xu, Youxin, 2023. "Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water," Agricultural Water Management, Elsevier, vol. 281(C).
    10. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    11. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    12. Fatma Abouelenien & Toyokazu Miura & Yutaka Nakashimada & Nooran S. Elleboudy & Mohammad S. Al-Harbi & Esmat F. Ali & Mustafa Shukry, 2021. "Optimization of Biomethane Production via Fermentation of Chicken Manure Using Marine Sediment: A Modeling Approach Using Response Surface Methodology," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    13. Khasanov, Sayidjakhon & Li, Fadong & Kulmatov, Rashid & Zhang, Qiuying & Qiao, Yunfeng & Odilov, Sarvar & Yu, Peng & Leng, Peifang & Hirwa, Hubert & Tian, Chao & Yang, Guang & Liu, Hongguang & Akhmato, 2022. "Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: as an example of Syrdarya Province, Uzbekistan," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Jemin Son & Kang Hyun Lee & Taek Lee & Hyun Soo Kim & Weon Ho Shin & Jong-Min Oh & Sang-Mo Koo & Byung Jo Yu & Hah Young Yoo & Chulhwan Park, 2022. "Enhanced Production of Bacterial Cellulose from Miscanthus as Sustainable Feedstock through Statistical Optimization of Culture Conditions," IJERPH, MDPI, vol. 19(2), pages 1-9, January.
    15. Alina Zaharia & Maria-Claudia Diaconeasa & Natalia Maehle & Gergely Szolnoki & Roberta Capitello, 2021. "Developing Sustainable Food Systems in Europe: National Policies and Stakeholder Perspectives in a Four-Country Analysis," IJERPH, MDPI, vol. 18(14), pages 1-40, July.
    16. Sigrid Kusch-Brandt, 2020. "Towards More Sustainable Food Systems—14 Lessons Learned," IJERPH, MDPI, vol. 17(11), pages 1-8, June.
    17. Phemelo Tamasiga & Taghi Miri & Helen Onyeaka & Abarasi Hart, 2022. "Food Waste and Circular Economy: Challenges and Opportunities," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    18. Wei-Jhan Syu & Tsun-Kuo Chang & Shu-Yuan Pan, 2020. "Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    19. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    20. Yang, Ting & Cherchian, Setrag & Liu, Xinmin & Shahrokhnia, Hossein & Mo, Minghao & Šimůnek, Jirka & Wu, Laosheng, 2023. "Effect of water application methods on salinity leaching efficiency in different textured soils based on laboratory measurements and model simulations," Agricultural Water Management, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6943-:d:832551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.