IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v263y2022ics0378377421007216.html
   My bibliography  Save this article

Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: as an example of Syrdarya Province, Uzbekistan

Author

Listed:
  • Khasanov, Sayidjakhon
  • Li, Fadong
  • Kulmatov, Rashid
  • Zhang, Qiuying
  • Qiao, Yunfeng
  • Odilov, Sarvar
  • Yu, Peng
  • Leng, Peifang
  • Hirwa, Hubert
  • Tian, Chao
  • Yang, Guang
  • Liu, Hongguang
  • Akhmatov, Doniyor

Abstract

Salt accumulation in irrigated lands is an intercontinental environmental issue that adversely influences the sustainable land use, agricultural land productivity and global food security. With the higher level of groundwater table (GWT) and its increased mineralization, global climate emergency in arid lands also obviously increase soil salinity (SS) in Uzbekistan. Analyses of perennial data on saline agricultural lands were performed by principally depending on conventional outdated methods. The integration of GIS approach to map the widespread of GWT, groundwater mineralization (GWM) and SS in irrigated lands of Syrdarya province in Uzbekistan were manipulated within the limited time period. Nevertheless, in particular irrigated areas where GWT is shallow and highly mineralized, insufficient scientific data and GWT maps created in accordance with GIS-based methods is identified, restricting a better establishment of tracing the SS of irrigated land over time as GWT and GWM rise. Thus, our study is to trace and delineate the dynamic and spatial changes in GWT, GWM and SS caused by climate factors over 2000–2019 by integrating traditional research methods and cross-validated GIS methods in the example of irrigated land of Syrdarya province in Uzbekistan. To reach this goal, a fieldwork was organized and relying on the in-situ data collected from around 3800 different points for soil sampling and 1500 observation wells for groundwater studies, GIS-based maps were created for four last experimental years 2016–2019 using the Inverse Distance Weighting (IDW) interpolation. By comparing the IDW maps with the in-situ data, an overall accuracy of maps per each variable was calculated and data from maps were quantified. A statistical approach was applied to examine the interrelationship between GWT, GWM, SS and climatic factors such as seasonal air temperature and seasonal precipitation. GWT and GWM are moderately correlated each other, but, these two variables are considered as the main drivers to the enlargement of saline irrigated areas in the province.

Suggested Citation

  • Khasanov, Sayidjakhon & Li, Fadong & Kulmatov, Rashid & Zhang, Qiuying & Qiao, Yunfeng & Odilov, Sarvar & Yu, Peng & Leng, Peifang & Hirwa, Hubert & Tian, Chao & Yang, Guang & Liu, Hongguang & Akhmato, 2022. "Evaluation of the perennial spatio-temporal changes in the groundwater level and mineralization, and soil salinity in irrigated lands of arid zone: as an example of Syrdarya Province, Uzbekistan," Agricultural Water Management, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377421007216
    DOI: 10.1016/j.agwat.2021.107444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421007216
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107444?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrakhimov, Mirzakhayot & Awan, Usman Khalid & George, Biju & Liaqat, Umar Waqas, 2018. "Understanding surface water–groundwater interactions for managing large irrigation schemes in the multi-country Fergana valley, Central Asia," Agricultural Water Management, Elsevier, vol. 201(C), pages 99-106.
    2. Tobias Siegfried & Thomas Bernauer & Renaud Guiennet & Scott Sellars & Andrew Robertson & Justin Mankin & Peter Bauer-Gottwein & Andrey Yakovlev, 2012. "Will climate change exacerbate water stress in Central Asia?," Climatic Change, Springer, vol. 112(3), pages 881-899, June.
    3. Edelmann, Dominic & Móri, Tamás F. & Székely, Gábor J., 2021. "On relationships between the Pearson and the distance correlation coefficients," Statistics & Probability Letters, Elsevier, vol. 169(C).
    4. Kitamura, Yoshinobu & Yano, Tomohisa & Honna, Toshimasa & Yamamoto, Sadahiro & Inosako, Koji, 2006. "Causes of farmland salinization and remedial measures in the Aral Sea basin--Research on water management to prevent secondary salinization in rice-based cropping system in arid land," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Jianduo & Wang, Nan & Hu, Bifeng & Feng, Chunhui & Wang, Yuzhen & Peng, Jie & Shi, Zhou, 2023. "Integrating multisource information to delineate oasis farmland salinity management zones in southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    2. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Bhaduri, Anik & Djanibekov, Nodir, 2015. "Adoption of Water-Efficient Technology: Role of Water Price Flexibility, Tenure Uncerntainty and Production Targets in Uzbekistan," 2015 Conference, August 9-14, 2015, Milan, Italy 211336, International Association of Agricultural Economists.
    4. Shumin Han & Qiuli Hu & Yonghui Yang & Jiusheng Wang & Ping Wang & Quan Wang, 2015. "Characteristics and Driving Factors of Drainage Water in Irrigation Districts in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5323-5337, November.
    5. Jacek Czyżewicz & Piotr Jaskólski & Paweł Ziemiański & Marian Piwowarski & Mateusz Bortkiewicz & Krzysztof Laszuk & Ireneusz Galara & Marta Pawłowska & Karol Cybulski, 2022. "Towards Designing an Innovative Industrial Fan: Developing Regression and Neural Models Based on Remote Mass Measurements," Energies, MDPI, vol. 15(7), pages 1-19, March.
    6. Feng, Di & Ning, Songrui & Sun, Xiaoan & Zhang, Jingmin & Zhu, Haiyan & Tang, Jingchun & Xu, Youxin, 2023. "Agricultural use of deserted saline land through an optimized drip irrigation system with mild salinized water," Agricultural Water Management, Elsevier, vol. 281(C).
    7. Kai Zhang & Shunjie Wang & Shuyu Liu & Kunlun Liu & Jiayu Yan & Xuejia Li, 2022. "Water Environment Quality Evaluation and Pollutant Source Analysis in Tuojiang River Basin, China," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    8. Qiang Tong & Donghui Li & Xin Ren & Hua Wang & Qing Wu & Li Zhou & Jiaqi Li & Honglu Zhu, 2023. "Classification Method of Photovoltaic Array Operating State Based on Nonparametric Estimation and 3σ Method," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    9. Tianqi Zhang & Yue Zhou & Ming Li & Haoran Zhang & Tong Wang & Yu Tian, 2022. "Impacts of Urbanization on Drainage System Health and Sustainable Drainage Recommendations for Future Scenarios—A Small City Case in China," Sustainability, MDPI, vol. 14(24), pages 1-24, December.
    10. Shan Zou & Abuduwaili Jilili & Weili Duan & Philippe De Maeyer & Tim Van de Voorde, 2019. "Human and Natural Impacts on the Water Resources in the Syr Darya River Basin, Central Asia," Sustainability, MDPI, vol. 11(11), pages 1-18, May.
    11. Singh, Ajay & Krause, Peter & Panda, Sudhindra N. & Flugel, Wolfgang-Albert, 2010. "Rising water table: A threat to sustainable agriculture in an irrigated semi-arid region of Haryana, India," Agricultural Water Management, Elsevier, vol. 97(10), pages 1443-1451, October.
    12. Yan Tang & Rui Xu & Mengfan Xie & Yusu Wang & Jian Li & Yi Zhou, 2022. "Spatiotemporal Evolution and Prediction of AOT in Coal Resource Cities: A Case Study of Shanxi Province, China," Sustainability, MDPI, vol. 14(5), pages 1, February.
    13. Wang, Chengcheng & Yang, Hui & Tong, Lige & Nie, Binjian & Zou, Boyang & Guo, Wei & Wang, Li & Ding, Yulong, 2023. "Numerical investigation of a shell-and-tube thermochemical reactor with thermal bridges: Structurale optimization and performance evaluation," Renewable Energy, Elsevier, vol. 206(C), pages 1212-1227.
    14. Chaofan Li & Qifei Han & Geping Luo & Chengyi Zhao & Shoubo Li & Yuangang Wang & Dongsheng Yu, 2018. "Effects of Cropland Conversion and Climate Change on Agrosystem Carbon Balance of China’s Dryland: A Typical Watershed Study," Sustainability, MDPI, vol. 10(12), pages 1-16, November.
    15. Wanlu Liu & Lulu Liu & Jiangbo Gao, 2020. "Adapting to climate change: gaps and strategies for Central Asia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(8), pages 1439-1459, December.
    16. Antoifi Abdoulhalik & Ashraf A. Ahmed, 2024. "A Comparative Analysis of Advanced Machine Learning Techniques for River Streamflow Time-Series Forecasting," Sustainability, MDPI, vol. 16(10), pages 1-15, May.
    17. Jing Wang & Bing Liu & Meng Sun & Feiyong Chen & Mitsuharu Terashima & Hidenari Yasui, 2022. "A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity," IJERPH, MDPI, vol. 19(11), pages 1-20, June.
    18. Iulii Didovets & Valentina Krysanova & Aliya Nurbatsina & Bijan Fallah & Viktoriya Krylova & Assel Saparova & Jafar Niyazov & Olga Kalashnikova & Fred Fokko Hattermann, 2024. "Attribution of current trends in streamflow to climate change for 12 Central Asian catchments," Climatic Change, Springer, vol. 177(1), pages 1-20, January.
    19. Hongguo Ren & Lei Zhang & Jing Zhang & Xue Wang & Qingqin Wang, 2024. "Exploration of a Rural Street Environment: The Difference in Sight between Villagers and Tourists," Sustainability, MDPI, vol. 16(7), pages 1-16, March.
    20. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:263:y:2022:i:c:s0378377421007216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.