IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i2p283-d1580079.html
   My bibliography  Save this article

Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives

Author

Listed:
  • Liya Zhao

    (State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
    Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven, Belgium)

  • Jingwei Wu

    (State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China)

  • Qi Yang

    (Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, 07745 Jena, Germany)

  • Hang Zhao

    (State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China)

  • Jun Mao

    (State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China)

  • Ziyang Yu

    (Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven, Belgium
    School of Humanities and Law, Northeastern University, Shenyang 110169, China)

  • Yanqi Liu

    (Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven, Belgium)

  • Anne Gobin

    (Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, 3001 Leuven, Belgium)

Abstract

This study investigates the complex interaction of biophysical and meteorological factors that drive evapotranspiration (ET) in saline environments. Leveraging a total of 182 cloud-free Landsat 5/8 time-series data from 1988 to 2019, we employed the Surface Energy Balance System (SEBS) model to quantify ET and investigate its relationships with soil salinity, vegetation cover, groundwater depth, and landscape metrics. We validated the predicted ET at two experimental sites using ET observation calculated by a water balance model. The result shows an R 2 of 0.78 and RMSE of 0.91 mm for the SEBS predicted ET, indicating high accuracy of the ET estimation. We detected abandoned saline farmland patches across Hetao and extracted the normalized difference vegetation index (NDVI), salinization index (SI), and the predicted ET for analysis. The results indicate that ET is negatively correlated with SI with a Pearson correlation coefficient ( r ) up to −0.7, while ET is positively correlated with NDVI ( r = 0.4). In addition, we designed a control-variable experiment in the Yichang subdistrict to investigate the effects of groundwater depth, land aggregation index, soil salinity index, and the area of abandoned saline farmland patches on ET. The results indicate that increased NDVI could significantly enhance ET, while smaller saline farmland patches exhibited greater sensitivity to groundwater recharge, with higher averaged ET than larger patches. Moreover, we analyzed factor importance using Lasso regression and Random Forest (RF) regression. The result shows that the ranking of the importance of the features is consistent for both methods and for all the features, with NDVI being the most important (with an RF importance score of 0.4), followed by groundwater table depth (GWTD), and the influence of the surface area of abandoned saline farmland being the weakest. We found that smaller patches of abandoned saline farmland were more sensitive to changes in groundwater levels induced by nearby irrigation, affecting their averaged ET more dynamically than larger patches. Decreasing patch size over time indicates ongoing changes in land management and ecological conditions. This study, through a multifactor analysis of ET in abandoned saline farmland and its intrinsic factors, provides a reference for evaluating the dry drainage efficiency of abandoned saline farmland in a dry drainage system.

Suggested Citation

  • Liya Zhao & Jingwei Wu & Qi Yang & Hang Zhao & Jun Mao & Ziyang Yu & Yanqi Liu & Anne Gobin, 2025. "Quantifying Evapotranspiration and Environmental Factors in the Abandoned Saline Farmland Using Landsat Archives," Land, MDPI, vol. 14(2), pages 1-28, January.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:283-:d:1580079
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/2/283/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/2/283/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haichang Yang & Fenghua Zhang & Yun Chen & Tingbao Xu & Zhibo Cheng & Jing Liang, 2016. "Assessment of Reclamation Treatments of Abandoned Farmland in an Arid Region of China," Sustainability, MDPI, vol. 8(11), pages 1-13, November.
    2. Mercedeh Taheri & Abdolmajid Mohammadian & Fatemeh Ganji & Mostafa Bigdeli & Mohsen Nasseri, 2022. "Energy-Based Approaches in Estimating Actual Evapotranspiration Focusing on Land Surface Temperature: A Review of Methods, Concepts, and Challenges," Energies, MDPI, vol. 15(4), pages 1-57, February.
    3. Liu, Y. & Pereira, L.S. & Fernando, R.M., 2006. "Fluxes through the bottom boundary of the root zone in silty soils: Parametric approaches to estimate groundwater contribution and percolation," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 27-40, July.
    4. Kitamura, Yoshinobu & Yano, Tomohisa & Honna, Toshimasa & Yamamoto, Sadahiro & Inosako, Koji, 2006. "Causes of farmland salinization and remedial measures in the Aral Sea basin--Research on water management to prevent secondary salinization in rice-based cropping system in arid land," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 1-14, September.
    5. Konukcu, F. & Gowing, J.W. & Rose, D.A., 2006. "Dry drainage: A sustainable solution to waterlogging and salinity problems in irrigation areas?," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 1-12, May.
    6. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Guanhua, 2018. "Growth responses of crops and natural vegetation to irrigation and water table changes in an agro-ecosystem of Hetao, upper Yellow River basin: Scenario analysis on maize, sunflower, watermelon and ta," Agricultural Water Management, Elsevier, vol. 199(C), pages 93-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Singh, Ajay, 2016. "Managing the water resources problems of irrigated agriculture through geospatial techniques: An overview," Agricultural Water Management, Elsevier, vol. 174(C), pages 2-10.
    3. Liu, Meihan & Shi, Haibin & Paredes, Paula & Ramos, Tiago B. & Dai, Liping & Feng, Zhuangzhuang & Pereira, Luis S., 2022. "Estimating and partitioning maize evapotranspiration as affected by salinity using weighing lysimeters and the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2019. "Hydrological complexities in irrigated agro-ecosystems with fragmented land cover types and shallow groundwater: Insights from a distributed hydrological modeling method," Agricultural Water Management, Elsevier, vol. 213(C), pages 868-881.
    5. Cao, Zhaodan & Zhu, Tingju & Cai, Ximing, 2023. "Hydro-agro-economic optimization for irrigated farming in an arid region: The Hetao Irrigation District, Inner Mongolia," Agricultural Water Management, Elsevier, vol. 277(C).
    6. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Darouich, Hanaa & Karfoul, Razan & Ramos, Tiago B. & Moustafa, Ali & Shaheen, Baraa & Pereira, Luis S., 2021. "Crop water requirements and crop coefficients for jute mallow (Corchorus olitorius L.) using the SIMDualKc model and assessing irrigation strategies for the Syrian Akkar region," Agricultural Water Management, Elsevier, vol. 255(C).
    8. Barnard, J.H. & van Rensburg, L.D. & Bennie, A.T.P. & du Preez, C.C., 2013. "Simulating water uptake of irrigated field crops from non-saline water table soils: Validation and application of the model SWAMP," Agricultural Water Management, Elsevier, vol. 126(C), pages 19-32.
    9. Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    10. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    11. Wang, Rong & Huang, Guanhua & Xu, Xu & Ren, Dongyang & Gou, Jiachao & Wu, Zhangsheng, 2022. "Significant differences in agro-hydrological processes and water productivity between canal- and well-irrigated areas in an arid region," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Zhao, Nana & Liu, Yu & Cai, Jiabing & Paredes, Paula & Rosa, Ricardo D. & Pereira, Luis S., 2013. "Dual crop coefficient modelling applied to the winter wheat–summer maize crop sequence in North China Plain: Basal crop coefficients and soil evaporation component," Agricultural Water Management, Elsevier, vol. 117(C), pages 93-105.
    13. Feng Tian & Haibin Shi & Qingfeng Miao & Ruiping Li & Jie Duan & Xu Dou & Weiying Feng, 2023. "Soil Water and Salt Transport in Severe Saline–Alkali Soil after Ditching under Subsurface Pipe Drainage Conditions," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    14. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    15. Li, Dan & Wan, Shuqin & Li, Xiaobin & Kang, Yaohu & Han, Xiaoyu, 2022. "Effect of water-salt regulation drip irrigation with saline water on tomato quality in an arid region," Agricultural Water Management, Elsevier, vol. 261(C).
    16. Wang, Yong & Zhao, Yong & Yan, Long & Deng, Wei & Zhai, Jiaqi & Chen, Minjian & Zhou, Fei, 2022. "Groundwater regulation for coordinated mitigation of salinization and desertification in arid areas," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    18. Pengfei Li & Xingchang Zhang & Mingde Hao & Yongxing Cui & Shilei Zhu & Yanjiang Zhang, 2019. "Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    19. Thomas Spencer & Tihomir Ancev & Jeff Connor, 2009. "Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 2085-2100, August.
    20. Wei Wei & Yuanjun Zhu & Hao Li & Kebin Zhang & Baitian Wang & Xiaohui Yang & Zhongjie Shi, 2018. "Spatio-Temporal Reorganization of Cropland Development in Central Asia during the Post-Soviet Era: A Sustainable Implication in Kazakhstan," Sustainability, MDPI, vol. 10(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:2:p:283-:d:1580079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.