IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p737-d312305.html
   My bibliography  Save this article

Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management

Author

Listed:
  • Wei-Jhan Syu

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 10617, Taiwan)

  • Tsun-Kuo Chang

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 10617, Taiwan)

  • Shu-Yuan Pan

    (Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei City 10617, Taiwan)

Abstract

In order to provide the real-time monitoring for identifying the sources of pollution and improving the irrigation water quality management, the integration of continuous automatic sampling techniques and cloud technologies is essential. In this study, we have established an automatic real-time monitoring system for improving the irrigation water quality management, especially for heavy metals such as Cd, Pb, Cu, Ni, Zn, and Cr. As a part of this work, we have first provided several examples on the basic water quality parameters (e.g., pH and electrical conductance) to demonstrate the capacity of data correction by the smart monitoring system, and then evaluated the trend and variance of water quality parameters for different types of monitoring stations. By doing so, the threshold (to initiate early warming) of different water quality parameters could be dynamically determined by the system, and the authorities could be immediately notified for follow-up actions. We have also provided and discussed the representative results from the real-time automatic monitoring system of heavy metals from different monitoring stations. Finally, we have illustrated the implications of the developed smart monitoring system for ensuring the safety of irrigation water in the near future, including integration with automatic sampling for establishing information exchange platform, estimating fluxes of heavy metals to paddy fields, and combining with green technologies for nonpoint source pollution control.

Suggested Citation

  • Wei-Jhan Syu & Tsun-Kuo Chang & Shu-Yuan Pan, 2020. "Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:737-:d:312305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/737/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/737/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mengjing Guo & Tiegang Zhang & Jing Li & Zhanbin Li & Guoce Xu & Rui Yang, 2019. "Reducing Nitrogen and Phosphorus Losses from Different Crop Types in the Water Source Area of the Danjiang River, China," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    2. Po-Kang Shih & Li-Chi Chiang & Sheng-Chi Lin & Tsun-Kuo Chang & Wei-Chan Hsu, 2019. "Application of Time-Lapse Ion Exchange Resin Sachets (TIERS) for Detecting Illegal Effluent Discharge in Mixed Industrial and Agricultural Areas, Taiwan," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    3. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    4. Meie Wang & Haizhen Zhang, 2018. "Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors," IJERPH, MDPI, vol. 15(6), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanwen Zhang & Yanwei Liu & Fukun Gui & Xu Yang, 2023. "A Universal Aquaculture Environmental Anomaly Monitoring System," Sustainability, MDPI, vol. 15(7), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    2. Elżbieta Zawierucha & Monika Skowrońska & Marcin Zawierucha, 2022. "Chemical and Biological Properties of Agricultural Soils Located along Communication Routes," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    3. Nattanan Krailertrattanachai & Daojarus Ketrot & Worachart Wisawapipat, 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand," IJERPH, MDPI, vol. 16(5), pages 1-12, February.
    4. Jaskaran Kaur & Sartaj Ahmad Bhat & Navdeep Singh & Sandip Singh Bhatti & Varinder Kaur & Jatinder Kaur Katnoria, 2022. "Assessment of the Heavy Metal Contamination of Roadside Soils Alongside Buddha Nullah, Ludhiana, (Punjab) India," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    5. Jorge Paz-Ferreiro & Gabriel Gascó & Ana Méndez & Suzie M. Reichman, 2018. "Soil Pollution and Remediation," IJERPH, MDPI, vol. 15(8), pages 1-3, August.
    6. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.
    7. Wanjiang She & Linghui Guo & Jiangbo Gao & Chi Zhang & Shaohong Wu & Yuanmei Jiao & Gaoru Zhu, 2022. "Spatial Distribution of Soil Heavy Metals and Associated Environmental Risks near Major Roads in Southern Tibet, China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    8. Fatma Abouelenien & Toyokazu Miura & Yutaka Nakashimada & Nooran S. Elleboudy & Mohammad S. Al-Harbi & Esmat F. Ali & Mustafa Shukry, 2021. "Optimization of Biomethane Production via Fermentation of Chicken Manure Using Marine Sediment: A Modeling Approach Using Response Surface Methodology," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    9. Ababo Workineh Tadesse & Tekleweini Gereslassie & Qiang Xu & Xiaojun Tang & Jun Wang, 2018. "Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China," IJERPH, MDPI, vol. 15(12), pages 1-19, December.
    10. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    11. Guijie Tong & Shaohua Wu & Yujie Yuan & Fufu Li & Lian Chen & Daohao Yan, 2018. "Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    12. Jing Wang & Bing Liu & Meng Sun & Feiyong Chen & Mitsuharu Terashima & Hidenari Yasui, 2022. "A Kinetic Model for Anaerobic Digestion and Biogas Production of Plant Biomass under High Salinity," IJERPH, MDPI, vol. 19(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:737-:d:312305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.